

ОАО "АВТОДИЗЕЛЬ" (Ярославский моторный завод)

СИЛОВЫЕ АГРЕГАТЫ

ЯМЗ-238БЕ2, ЯМЗ-238БЕ, ЯМЗ-238Б ЯМЗ-238ДЕ2, ЯМЗ-238ДЕ, ЯМЗ-238Д

> Руководство по эксплуатации 238ДЕ-3902150 РЭ

Руководство содержит описание конструкции, основные правила эксплуатации и технического обслуживания силовых агрегатов ЯМЗ-238БЕ2, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, ЯМЗ-238ДЕ, ЯМЗ-238ДЕ всех комплектаций и исполнений.

Положения руководства распространяются на силовые агрегаты в комплектности ОАО «Автодизель».

Руководство предназначено для всех лиц, связанных с эксплуатацией силовых агрегатов ЯМЗ производства ОАО «Автодизель» соответствующих моделей.

В разделе «Дополнение к руководству» приводятся применяемость, техническая характеристика, конструктивные особенности, правила эксплуатации и технического обслуживания двигателей ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БВ, ЯМЗ-238БЛ-1, ЯМЗ-238БД, ЯМЗ-238НД3, ЯМЗ-238НД4, ЯМЗ-238НД5, ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД6, ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД8, их комплектаций.

Ответственный редактор — директор ИКЦ ОАО «Автодизель» Н. Л. Шамаль.

В подготовке материалов и составлении руководства принимали участие: В.К. Кузнецов, Д.В. Бойков, Б.П. Бугай, В.П. Волин, Е.Н. Гогин, Ю.В. Голубев, В.В. Курманов, В.У. Кушилов, В.В. Паймулов, В.В. Рыбаков, В.В. Таммор, В.А. Шульгин.

Все замечания по конструкции и работе силового агрегата, а также пожелания и предложения по содержанию настоящего руководства просим направлять по адресу: 150040, г. Ярославль, проспект Октября, 75, ОАО «Автодизель», Инженерно-конструкторский центр.

В связи с постоянной работой по совершенствованию силовых агрегатов, направленной на повышение их надежности и долговечности, улучшение экологических показателей в конструкцию могут быть внесены незначительные изменения, не отраженные в настоящем издании.

© ОАО «Автодизель» (ЯМЗ), 2011

Перепечатка, размножение или перевод, как в полном, так и в частичном виде, не разрешается без письменного разрешения ИКЦ ОАО «Автодизель»

190711

УВАЖАЕМЫЙ ВЛАДЕЛЕЦ!

Мошный И экономичный силовой агрегат, эксплуатации которого Вы приступаете, надежен и удобен в эксплуатации. Однако нужно помнить, что срок службы в значительной степени зависит регулярного ОТ тщательного ухода за ним. Перед началом эксплуатации ВНИМАТЕЛЬНО изучите настоящее руководство соблюдайте все его требования. Руководство составлено на основе исследовательских работ и опыта эксплуатации и содержит необходимые указания, точное и неуклонное обеспечит безотказную соблюдение которых Вам длительную работу силового агрегата.

Ha непрерывно заводе ведется работа усовершенствованием силового агрегата. Обратите внимание на дополнение, в которое внесены технические изменения, внедренные после издания настояшего Дополнение руководства. располагается конце руководства или прикладывается отдельно.

ВНИМАНИЕ! ПЕРЕД НАЧАЛОМ ЭКСПЛУАТАЦИИ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ ВНИМАТЕЛЬНО ПРОЧТИТЕ РАЗДЕЛ «ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ» НАСТОЯЩЕГО РУКОВОДСТВА, В КОТОРОМ ПРИВЕДЕНА ВАЖНАЯ ИНФОРМАЦИЯ О ГАРАНТИИ НА НОВЫЙ СИЛОВОЙ АГРЕГАТ/ДВИГАТЕЛЬ ПРОИЗВОДСТВА ОАО «АВТОДИЗЕЛЬ» (ЯМЗ), ОБ УСЛОВИЯХ ПРЕДОСТАВЛЕНИЯ ГАРАНТИИ, ГАРАНТИЙНОМ ПЕРИОДЕ И ПОРЯДКЕ ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ.

ВНИМАНИЕ!

- 1. Исправная работа силового агрегата и длительный срок службы находятся в прямой зависимости от культуры эксплуатации. Перед началом эксплуатации внимательно ознакомьтесь с настоящим руководством.
- 2. Соблюдать правила, указанные в разделе "Обкатка нового двигателя". В этот период происходит приработка трущихся поверхностей.
- 3. Применение топлива, смазочных материалов, охлаждающих жидкостей, не указанных в настоящем руководстве, не разрешается.
- 4. Перед пуском двигателя после смены масла, масляного фильтрующего элемента, длительной (5 суток и более) стоянки, замены или ремонта сборочных единиц и деталей, установить скобу останова регулятора в положение выключенной подачи и в течение 10-15 секунд проворачивать стартером коленчатый вал двигателя. При наличии давления масла можно пускать двигатель, при отсутствии пуск повторить через 1-1,5 мин. После пуска двигатель должен работать на оборотах холостого хода не превышающих 1000 мин⁻¹, но не более 5 мин.
- 5. После пуска прогрев двигателя до рабочей температуры 75-90°C производить под нагрузкой. Не следует прогревать двигатель, допуская его длительную работу на минимальной частоте вращения холостого хода. Как только двигатель начнет реагировать на изменение подачи топлива и в системе тормозов будет обеспечено нормальное рабочее давление, постепенно увеличивать частоту вращения до средней рабочей и начинать движение на пониженных передачах. Полная нагрузка непрогретого двигателя не допускается. Допускается кратковременное (до 10 мин) повышение температуры охлаждающей жидкости до 95°C. Допускается предельная температура охлаждающей жидкости до 95°C при применении моторных масел повышенной вязкости, не ниже М-4₃/14 (SAE 10W-40). При этом допускается кратковременное (до 10 мин) повышение температуры до 100°C.
- 6. При эксплуатации двигателя следить за давлением масла в системе смазки (см. раздел «Контроль за работой двигателя»).
- 7. Во избежание поломки турбокомпрессора перед остановкой двигатель должен поработать в течение 3-5 минут на средних оборотах холостого хода.
- 8. **Не рекомендуется** работа двигателя на минимальной частоте вращения холостого хода более 10-15 минут.
- 9. Во избежание поломки категорически запрещается включать стартер на работающем или неостановившемся двигателе.
- 10. Техническое обслуживание необходимо выполнять согласно раздела «Техническое обслуживание».
- 11. Работа двигателя со светящимися лампами сигнализаторов засоренности масляного или воздушного фильтров не допускается.
- 12. На двигателях применять фильтрующие элементы, имеющие Сертификат соответствия, выданный соответствующим центром по сертификации, и допуск на их применение, выданный ОАО «Автодизель» изготовителям.
- 13. Соблюдайте правила эксплуатации сцепления и коробки передач (см. соответствующие разделы руководства).

НАЗНАЧЕНИЕ И ОСОБЕННОСТИ КОМПЛЕКТАЦИИ

Силовые агрегаты, двигатели производства ОАО «Автодизель» многоцелевого назначения. Технические характеристики, универсальность, высокая степень унификации, ремонтопригодность способствуют их широкому применению на автомобилях и других изделиях различного назначения.

Применяемость силовых агрегатов, двигателей ОАО «Автодизель» приведена в таблице. Силовые агрегаты и двигатели предназначены для установки только на изделия, указанные в таблице и других дополнениях к настоящему руководству.

Применение силовых агрегатов и двигателей на новых моделях изделий обязательно должно быть согласовано изготовителем изделий с ОАО «Автолизель».

Модель	Ко	омплектнос	ТЬ	Изделия, на которые
силового агрегата и комплектация	Модель сцепления	Модель коробки передач	Модель генератора	устанавливаются силовые агрегаты, двигатели
ЯМЗ- 238ДЕ-1	_	_	- * ³	ОАО «МАЗ», автомобили (в запасные части)
ЯМЗ- 238ДЕ-5	ЯМ3- 183-40	ı	- * ³	OAO «MA3», автомобили
ЯМЗ- 238ДЕ-10	-	ı	1	(в запасные части)
ЯМЗ- 238ДЕ-11	ЯМЗ-183	ЯМЗ-239	- * ³	ОАО «МАЗ», автомобили (в запасные части)
ЯМЗ- 238ДЕ-12	ЯМЗ-183	-	- * ³	ОАО «МАЗ», автомобили (в запасные части)
ЯМЗ- 238ДЕ-22	_	-	4007. 3771-86	ПО «Гомсельмаш» Зерноуборочный комбайн K3C-1218 «Полесье»
ЯМЗ- 238ДЕ2-1	ЯМЗ- 183-15	ЯМ3- 2381-26	- * ³	OAO «МЗКТ», автомобили
ЯМЗ- 238ДЕ2-2	-	-	1702.3771	XK «АвтоКрАЗ», автомобили (в запасные части)
ЯМ3- 238ДЕ2-3* ¹	_	-	_ *4	ОАО «МАЗ», автомобили типа МАЗ-6422
ЯМЗ- 238ДЕ2-5* ¹	ЯМ3- 183-40	_	_ *4	ОАО «МАЗ», автомобили типа МАЗ-6422
ЯМЗ- 238ДЕ2-16	ЯМ3- 183-35	ЯМ3- 239-23	- * ³	ОАО «МАЗ», автомобили герметичное исполнение

Модель	Ко	мплектнос	СТЬ	Изделия, на которые
силового агрегата и комплектация	Модель сцепления	Модель коробки передач	Модель генератора	устанавливаются силовые агрегаты, двигатели
ЯМЗ- 238ДЕ2-19* ¹	ЯМ3- 183-15	ЯМ3- 2381-06	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6422
ЯМЗ- 238ДЕ2-20* ¹	ЯМ3- 183-15	ЯМ3- 239-22	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6422
ЯМЗ- 238ДЕ2-21	ЯМ3- 183-10	ЯМ3- 2381-31	1702.3771	XK «АвтоКрАЗ» Автомобили
ЯМЗ- 238ДЕ2-22* ¹	ЯМ3- 183-15	ЯМ3- 2381-07	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6422
ЯМЗ- 238ДЕ2-29	ЯМ3- 183-15	ЯМ3- 2381-36	1702.3771	XK «АвтоКрАЗ» Автомобили
ЯМЗ- 238ДЕ2-33* ⁵	ЯМ3- 183-15	ЯМ3- 2381-36	9422. 3701-03	XK «АвтоКрАЗ» Автомобили
ЯМ3- 238ДЕ2-36* ²	-	-	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6430
ЯМЗ- 238ДЕ2-38* ²	ЯМ3- 183-15	ЯМ3- 2381-06	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6430
ЯМЗ- 238ДЕ2-39* ²	ЯМ3- 183-15	ЯМ3- 2381-07	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6430
ЯМЗ- 238ДЕ2-40* ²	ЯМ3- 183-15	ЯМ3- 239-22	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6430
ЯМЗ- 238ДЕ2-41* ²	ЯМ3- 183-40	_	- * ⁴	ОАО «МАЗ», автомобили типа МАЗ-6430
ЯМЗ- 238ДЕ2-42	ЯМ3- 183-15	ЯМ3- 2381-06	- * ³	ОАО «МЗКТ», седельные тягачи 6x6
ЯМЗ- 238ДЕ2-43	_	-	- * ³	ОАО «МАЗ», автомобили выпуска до 01.04.2010 г. (в запасные части)
ЯМ3- 238ДЕ2-46* ⁵	ЯМЗ- 183-15	ЯМ3- 2381-36	9422. 3701-03	XK «АвтоКрАЗ» Автомобили

 $^{*^1}$ - вентилятор с вязкостной муфтой, без кожуха вентилятора;

Применяемость силовых агрегатов, двигателей ЯМЗ-238Б, ЯМЗ-238Д, их модификаций и комплектаций приводится в разделе «Двигатели ЯМЗ-238Б, ЯМЗ-238Д ...» дополнения к руководству.

 $^{*^2}$ - вентилятор с вязкостной муфтой, с кожухом вентилятора; $*^3$ - генератор модели 3232.3771 производства ОАО «БАТЭ» г. Борисов, Минской обл., Беларусь устанавливает ОАО «МАЗ»;

^{*4 -} генератор модели 3252.3771-50 производства ОАО «БАТЭ» г. Борисов, Минской обл., Беларусь устанавливает ОАО «МАЗ».

 $^{*^5}$ - вентилятор с вязкостной муфтой ВМПВ 001.01.001-КрАЗ устанавливает ХК «АвтоКрАЗ».

Двигатели с турбонаддувом ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 и их комплектации соответствуют экологическим нормативам Евро-2.

Двигатели с турбонаддувом ЯМЗ-238БЕ, ЯМЗ-238ДЕ и их комплектации соответствуют экологическим нормативам Евро-1.

Двигатели с турбонаддувом ЯМЗ-238Б, ЯМЗ-238Д и их комплектации соответствуют экологическим нормативам Евро-0.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Силовые агрегаты рассчитаны на эксплуатацию при температурах окружающего воздуха от минус 60°С до плюс 50°С, относительной влажности до 98% при температуре 25°С, запыленности воздуха до 0,4 г/м³, а также на движение автомобиля в горных условиях на высоте до 4500 м над уровнем моря и преодоление перевалов до 4650 м над уровнем моря при соответствующем снижении мощностных и экономических показателей.

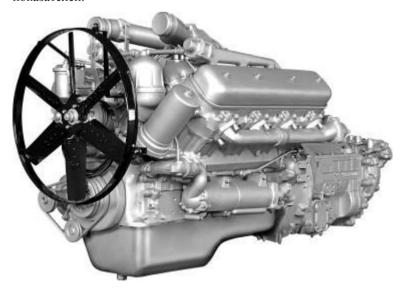


Рис. 1. Силовой агрегат ЯМЗ-238ДЕ2

ОСНОВНЫЕ ПАРАМЕТРЫ И ХАРАКТЕРИСТИКИ

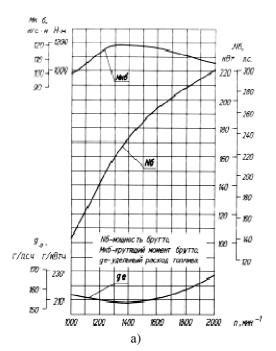
Основные параметры и	Модели силовых агрегатов				
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2	
Тип двигателя	Четырехт	актный с воспламене	ением от сжатия и ту	рбонаддувом	
Число цилиндров			8		
Расположение цилиндров		V-образное, у	угол развала 90°		
Порядок работы цилиндров	1-5-4-2-6-3-7-8				
	правый ряд ципиндров				
Схема нумерации цилиндров					
Направление вращения коленчатого вала	левый ряд цилиндров Правое				
Диаметр цилиндра, мм	130				
Ход поршня, мм	140				
Рабочий объем, л	14,86				
Степень сжатия	15,2	16,5	15,2	16,5	

Основные параметры и	Модели силовых агрегатов			
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2
Номинальная мощность, кВт (л.с.)	22.	1 (300)	243 (330)	
Частота вращения колен- чатого вала при номи- нальной мощности, мин ⁻¹	2000 +50 -20		2100) ⁺⁵⁰ ₋₂₀
Максимальный крутящий момент, $H \cdot M$ (кгс·м)	1180 (120)	1274 (130)	1225 (125)	1274 (130)
Частота вращения при максимальном крутящем моменте, мин ⁻¹	1200 - 1400	1100 - 1300	1200 - 1400	1100 - 1300
Частота вращения холостого хода, мин ⁻¹ :				
- максимальная, не более	2175	2340	2275	2340
- минимальная	600±50	650700	600±50	650700
Удельный расход топлива по скоростной характеристике, г/кВт·ч (г/л.с.·ч):				
- минимальный	206,7 (152)	195 (143)	206,7 (152)	195 (143)
- при номинальной мощности	227 (167)	223 (164)	227 (167)	230 (169)

Основные параметры и	Модели силовых агрегатов				
характеристики	ЯМЗ-238БЕ	ЯМ3-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2	
Удельный расход масла на угар в % к расходу топлива, не более	0,2				
Скоростная характеристика		См. рис. 2 - 3			
Способ смесеобразования	Непосредственный впрыск				
Камера сгорания	Неразделенного типа в поршне				
Распределительный вал	Один для	обоих рядов цилиндр	оов с шестеренчатым	и приводом	
Фазы газораспределения:					
впускные клапаны		1			
-открытие, град. до ВМТ	20	21,5	20	21,5	
-закрытие, град. после НМТ	40	31,5	40	31,5	
выпускные клапаны					
-открытие, град. до НМТ	66	63	66	63	
-закрытие, град. после ВМТ	20	29,5	20	29,5	
Число клапанов на цилиндр		Один впускной г	и один выпускной		

Основные параметры и		Модели силог	вых агрегатов	
характеристики	ЯМЗ-238БЕ	ЯМЗ-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2
Тепловые зазоры клапанов на холодном двигателе, мм		0,25	- 0,30	
Система смазки	Смешанная, с охлаждением масла в жидкостно-масляном теплообменнике: -под давлением смазываются подшипники коленчатого вала, распределительного вала, толкателей, осей коромысел, сферические поверхности штанг толкателей, топливный насос высокого давления, турбокомпрессор. Остальные трущиеся поверхности смазываются разбрызгиванием.			
Масляный насос	Шестеренчатого типа, односекционный			
Давление масла на прогретом двигателе в магистрали блока, к Π а (кгс/см ²):				
- при номинальной частоте вращения		400 - 70	0 (4 - 7)	
- при минимальной частоте вращения, не менее		100	(1,0)	
Масляные фильтры	Два: полнопоточ центробежной очи	ный фильтр очистки истки	с фильтрующим эл	пементом и фильтр
Система охлаждения масла	С жидкостно-ма блок цилиндров д	сляным теплообмен двигателя слева	ником, который ус	станавливается на
				1.1

Основные параметры и	Модели силовых агрегатов				
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМ3-238ДЕ	ЯМЗ-238ДЕ2	
Давление масла открытия клапанов системы смазки, $\kappa\Pi a \left(\kappa rc/cm^2 \right)$:					
 редукционный клапан масляного насоса 		700 - 800	(7,0 – 8,0)		
- дифференциальный клапан	490 - 520 (4,9 - 5,2)				
 перепускной клапан масляного фильтра 	200 - 250 (2,0 - 2,5)				
Система питания топливом		Разделен	ного типа		
Топливный насос высокого давления (ТНВД) с регулятором и топливоподкачивающим насосом	Восьмисекционный, плунжерный, плунжеры золотникового типа: - диаметр плунжера 10 мм, ход плунжера 11 мм – ЯМЗ-238БЕ, ЯМЗ-238ДЕ; - диаметр плунжера 12 мм, ход плунжера 14 мм – ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2				
Модель ТНВД	807.1111005-50	173.1111006-20	806.1111005-50	173.1111005-30	
Порядок работы секций топливного насоса	1-3-6-2-4-5-7-8				
Регулятор частоты вращения		Центробежный	і, всережимный		


Основные параметры и		Модели сило	вых агрегатов	
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2
Топливоподкачивающий				
насос	По	ршневой с насосом р	учной прокачки топ	лива
Форсунки	Закр	ытого типа с многодь	прчатыми распылите	елями:
	- 261.1112010-13	(12) на двигателях ЯМЗ	З-238БЕ, -238Б, ЯМЗ-2	238ДЕ, -238Д;
	- 267.1112010-01	или 204.1112010-50.0	1 на двигателях ЯМЗ-2	238БЕ2, ЯМЗ-238ДЕ2;
Давление начала впрыски-	ыски- $22,6^{+0.8}(230^{+8})$ - $261.1112010-13(12)$			
вания форсунки, МПа		$26,5^{+0,8}(270^{+8})$ - 2	267.1112010-01	
(кгс/см ²)	$26,5^{+1,2}(270^{+12})$ - 204.1112010-50.01			
Установочный угол опе-	Устанавливае ⁻	гся по меткам на махо	вике и корпусе ТНЕ	ВД и составляет:
режения впрыскивания	13°±1 - на двигателях ЯМЗ-238БЕ, ЯМЗ-238ДЕ;			
топлива	6°±1 - на двигателях ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2			
Топливные фильтры:				
- грубой очистки	Со сменным элем	иентом (ЯМЗ-238БЕ, ,	ДЕ, Б, Д), отстойник	: (ЯМЗ-238БЕ2, ДЕ2)
- тонкой очистки	Со сменным фильтром для топлива.			
		положен перепускно 2040 (0,20,4) кПа		Давление открытия
Система наддува	Газотурбинный,	одним турбокомпресс	сором, с радиальной	
	центростремител	ьной турбиной и цент	гробежным компрес	сором

Основные параметры и	Модели силовых агрегатов			
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2
Турбокомпрессор (ТКР)	Модель 122 или TKP 100*			
Давление наддува (избыточное) на номинальном режиме работы, $\kappa\Pi a \left(\kappa r c/c m^2 \right)$	95	(0,95)	110	(1,10)
Система охлаждения	Жидкостная, закрытого типа, с принудительной циркуляцией охлаждающей жидкости. Оборудована термостатическим устройством для автоматического поддержания теплового режима работы двигателя			
Водяной насос	Центробежного типа, с ременным приводом			
Вентилятор	Шестилопастный, с шестеренчатым приводом и фрикционной муфтой включения вентилятора			
Жидкостно-масляный теплообменник	Пластинчатого или трубчатого типа. Оборудованы краником или пробкой для слива охлаждающей жидкости			
Термостаты	С твердым наполнителем. Температура открытия 80°C.			
Электрооборудование	Однопроводная с	хема. Номинальное н	апряжение 24В	

^{* –} турбокомпрессор по конструкции аналогичен ТКР модели 122

Основные параметры и		Модели сило	вых агрегатов	
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМ3-238ДЕ	ЯМЗ-238ДЕ2
Генератор	Переменного тока, с ременным двухручьевым приводом, с номинальным напряжением 28В. Модель генератора определяется комплектацией. Смотри раздел «Комплектация»			
Пусковое устройство	Электрический стартер модели 25.3708-21 или AZF 4581 производства фирмы "Искра" (Словения), номинальное напряжение 24 В.			
		рименение стартера геля предусмотрено э.		
Сцепление	Смотри раздел «l	Комплектация»		
Коробка передач	Смотри раздел «l	Комплектация»		
Заправочные емкости, л:				
- система смазки двигателя		3	32	
- система охлаждения (без объема водян. радиатора)		2	22	
 муфта опережения впрыскивания топлива 	0,14	_	0,14	_
- коробка передач	Смотри раздел «І	Коробка передач»		

Основные параметры и	Модели силовых агрегатов			
характеристики	ЯМ3-238БЕ	ЯМЗ-238БЕ2	ЯМЗ-238ДЕ	ЯМЗ-238ДЕ2
Масса незаправленного силового агрегата в комплектности поставки, кг:				
 без сцепления и коробки передач 	1180	1215	1180	1215
- со сцеплением	1225	1260	1225	1260
 со сцеплением и коробкой передач 	1580	1615	1580	1615
Габаритные размеры, мм	См. рис. 4			

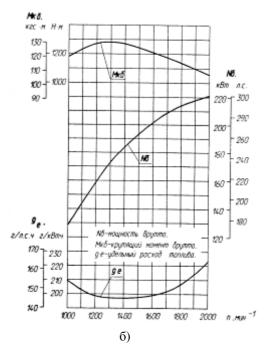
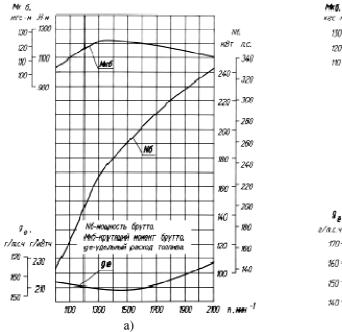



Рис. 2. Скоростная характеристика двигателей: а) ЯМЗ-238БЕ; б) ЯМЗ-238БЕ2 где: Nб - номинальная мощность брутто; Mк.б. - крутящий момент брутто; ge-удельный расход топлива; n - частота вращения коленчатого вала.

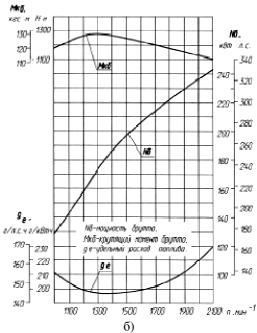


Рис. 3. Скоростная характеристика двигателей: а) ЯМЗ-238ДЕ; б) ЯМЗ-238ДЕ2 где: Nб - номинальная мощность брутто; Мк.б. - крутящий момент брутто; де-удельный расход топлива; n - частота вращения коленчатого вала.

Рис. 4. Габаритные размеры (мм) силовых агрегатов ЯМЗ-238БЕ2, ЯМЗ-238БЕ, ЯМЗ-238ДЕ2, ЯМЗ-238ДЕ.

УСТРОЙСТВО И РАБОТА ДВИГАТЕЛЯ

Общее устройство двигателя ЯМЗ-238ДЕ2 показано на поперечном (рис. 5) и продольном (рис. 6) разрезах. Устройство остальных двигателей, приведенных в настоящем руководстве, аналогично, но может иметь и ряд конструктивных особенностей.

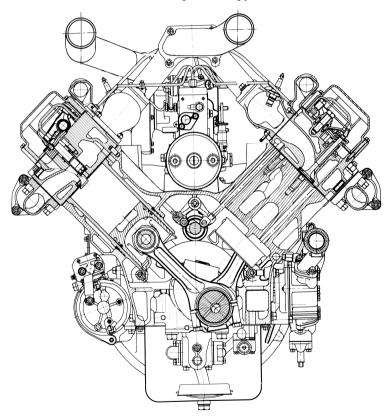
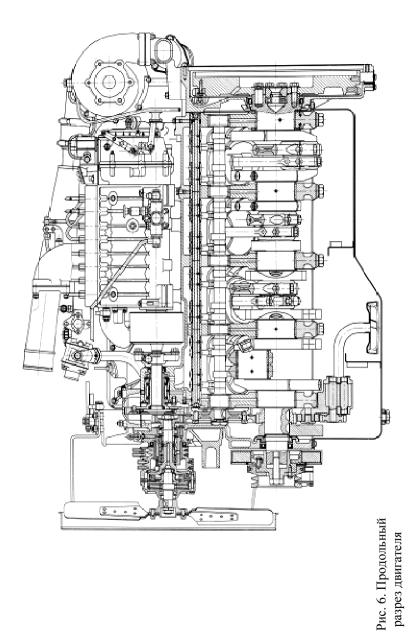



Рис. 5. Поперечный разрез двигателя

БЛОК ЦИЛИНДРОВ

Блок цилиндров отлит из низколегированного серого чугуна. Служит основанием для монтажа всех деталей и узлов двигателя. Блок V - образный с углом развала 90° . Правый ряд цилиндров смещен относительно левого вперед на $35\,$ мм, что обусловлено установкой на каждую шатунную шейку коленчатого вала двух шатунов.

Каждое цилиндровое гнездо имеет два соосных цилиндрических отверстия, выполненных в верхней и нижней плитах блока, по которым центрируется гильза цилиндра, в верхней плите имеется кольцевая проточка под бурт гильзы.

В развале блока имеется четыре опорные площадки с крепежными отверстиями для установки топливного насоса высокого давления. На переднем торце блока находится гнездо для подшипников привода топливного насоса.

В приливах (бобышках) на стенках блока имеется сложная система масляных каналов, для подвода смазки к подшипникам распределительного и коленчатого валов, а так же к масляному фильтру и жидкостно - масляному теплообменнику.

Стенки водяной рубашки образуют замкнутый силовой пояс вокруг каждого цилиндрового гнезда и вместе с дополнительными ребрами связывают верхнюю и нижнюю плиты цилиндровой части блока, обеспечивая конструкции необходимую жесткость. В картерных поперечных стенках блока расположены пять гнезд с вкладышами под коренные шейки коленчатого вала и пять расточек с бронзовыми втулками, в которых вращается распределительный вал.

Крышки коренных опор крепятся к блоку двумя вертикальными и двумя горизонтальными болтами. Благодаря чему достигается высокая жесткость блока в зоне коленчатого вала. Обработка гнезд под коленчатый вал производится в сборе с крышками, поэтому крышки коренных опор не взаимозаменяемы.

ГОЛОВКА ЦИЛИНДРОВ

Головка цилиндров изготовлена из низколегированного серого чугуна и крепится к блоку шпильками, ввернутыми в блок цилиндров. Шпильки изготовлены из хромоникелевой стали и термически обработаны. Для обеспечения отвода тепла головка цилиндров имеет полость жидкостного охлаждения, сообщающуюся с полостью блока. Для обеспечения подвода топлива к форсунке в боковой поверхности головки имеются отверстия под трубки.

В головке цилиндров размещены клапаны с пружинами, коромысла клапанов, стойки коромысел и форсунки.

Под клапаны газораспределения в головку с натягом установлены седла и направляющие втулки клапанов. Седла впускных клапанов изготовлены из специального чугуна, а седла выпускных — из специального жароупорного сплава. Седла и металлокерамические направляющие втулки клапанов окончательно обрабатываются после их запрессовки в головку.

На двигатели устанавливаются головки цилиндров блочные (общие):

- 1. Головки цилиндров двигателей ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 блочные на четыре цилиндра каждая. Привалочная к блоку цилиндров поверхность головки шлифована и имеет в зоне уплотнения гильз цилиндров кольцевые проточки. Уплотнение стыка головки цилиндров, блока и гильзы осуществляется прокладкой, состоящей из единой металлической прокладки на четыре цилиндра, уплотняющей газовый стык, и вставных, удерживаемых шпеньками, резиновых уплотнительных элементов, уплотняющих масляные, водяные и штанговые проходы. Уплотнительные элементы пяти видов в количестве 19 шт. на прокладку (рис. 7).
- 2. Головки цилиндров двигателей ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д блочные на четыре цилиндра каждая. Конструктивно выполнены в основном аналогично предыдущей блочной головке, но в зоне уплотнения гильз цилиндров нет кольцевых проточек. Стык головки цилиндров, блока и гильзы (рис. 8) уплотняется прокладкой из безасбестового полотна (типа «сэндвич») с окантовками газового стыка цилиндровых отверстий и овальных отверстий для прохода охлаждающей жидкости. В окантовки цилиндровых отверстий вставлены разрезные уплотнительные фторопластовые кольца. Крепление к блоку осуществляется 21-ой шпилькой с шайбами и гайками.

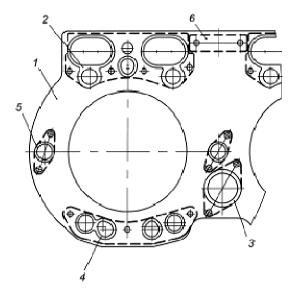


Рис. 7. Схема установки уплотнителей в металлическую прокладку:

- 1 металлическая прокладка; 2 уплотнитель штанговой полости;
- 3 уплотнитель слива масла; 4 уплотнитель подвода воды; 5 уплотнитель шпильки; 6 уплотнитель

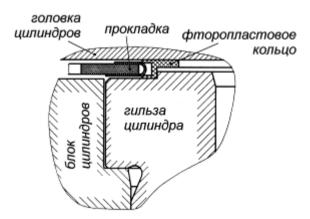


Рис. 8. Схема расположения деталей в месте уплотнения газового стыка

КОЛЕНЧАТЫЙ ВАЛ

Коленчатый вал — стальной, изготовлен методом горячей штамповки. Все поверхности вала азотированы и глубина азотированного слоя не менее 0,35 мм. Коленчатый вал имеет пять коренных опор и четыре шатунные шейки. На шатунных шейках установлены шатуны (по два на каждую). Коренные и шатунные шейки в процессе работы смазываются маслом под давлением. Масло подается к коренным опорам, а затем, по наклонным каналам к шатунным шейкам. В шатунных шейках есть закрытые заглушками внутренние полости, где масло подвергается дополнительной центробежной очистке.

Для уравновешивания двигателя и разгрузки коренных подшипников от инерционных сил движущихся масс поршней и шатунов и неуравновешенных центробежных сил на щеках коленчатого вала установлены противовесы, в сборе с которыми вал балансируется. Кроме того, в систему уравновешивания входят две выносные массы, одна из которых выполнена в виде выемки на маховике, закрепленном на заднем конце коленчатого вала, другая представляет собой противовес, установленный на переднем конце коленчатого вала.

Осевая фиксация вала осуществляется четырьмя бронзовыми полукольцами, установленными в выточках задней коренной опоры. Для предохранения от проворачивания нижние полукольца своими пазами входят в штифты, запрессованные в крышку заднего коренного подшипника.

Носок и хвостовик коленчатого вала уплотняются резиновыми самоподжимными манжетами.

На передний конец коленчатого вала напрессованы шестерня коленчатого вала и передний противовес, закрепленные гайкой (момент затяжки 176,4 - 294 Н·м (18 - 30 кгс·м).

Коленчатый вал двигателей ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 имеет конус на переднем конце. На конус устанавливается ступица, на которой закрепляются жидкостный гаситель крутильных колебаний и шкив. При ремонте двигателя следует помнить, что удары и вмятины на гасителе крутильных колебаний выводят его из строя, что неизбежно приведет к поломке коленчатого вала. Хранить и транспортировать гаситель следует только в специальной таре в вертикальном положении.

На двигатели ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д устанавливается коленчатый вал 238БЕ-1005009 (маркировка 238Н-1005015-У), а на двигатели ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 - коленчатый вал 238ДК-1005009-30 (маркировка 238ДК-1005015-30).

Маркируется коленчатый вал в поковке на 5-й щеке.

Шейки коленчатого вала могут быть двух номинальных размеров и поэтому возможны следующие варианты маркировки и применение соответствующих им вкладышей.

	238ДК –	238ДК –	238ДК –	238ДК –
Маркировка	1005015-30	1005015-30 Ш1	236ДК – 1005015-30 К1	236ДК – 1005015-30 Ш1К1
коленчатого	или	или	или	или
вала	238H –	238H –	238H –	238H -
Бала	1005015-У	1005015-У Ш1	1005015-У К1	1005015-У Ш1К1
Диаметр коренных шеек, мм	110 _{-0,022}	110 _{-0,022}	109,75 _{-0,022}	109,75 _{-0,022}
Маркировка	236-1005170-В	236-1005170-В	236-1005170-B P1	236-1005170-B P1
коренных	И	И	И	И
вкладышей	236-1005171-B	236-1005171-B	236-1005171-B P1	236-1005171-B P1
Толщина коренного вкладыша, мм	2,965 _{-0,012}	2,965 _{-0,012}	3,090 _{-0,012}	3,090 _{-0,012}
Диаметр шатунных шеек, мм	88,00 _{-0,022}	87,75 _{-0,022}	88,00 _{-0,022}	87,75 _{-0,022}
Маркировка шатунного вкладыша	236-1004058-B	236-1004058-B P1	236-1004058-B	236-1004058-B P1
Толщина шатунного вкладыша, мм	2,490 _{-0,012}	2,615 _{-0,012}	2,490 _{-0,012}	2,615 _{-0,012}

Примечание: Буквы «ДК», «Н», «У», «Ш», «К» и цифры «30», «1» клеймятся при маркировке ударным способом.

МАХОВИК

Маховик отлит из серого чугуна. Маркирован маховик в выемке на нерабочей поверхности в отливке. На двигатели могут быть установлены маховики следующих видов:

- 238-1005115-К (под зубчатый венец с модулем 4,25);
- 238-1005115-Н (под зубчатый венец с модулем 3,75).

Данные маховики в сборе с зубчатыми венцами между собой невзаимозаменяемы.

Маховик 238-1005115-К (под зубчатый венец с модулем 4,25) устанавливается со стартером модели 2501.3708-01, а маховик 238-1005115-Н (под зубчатый венец с модулем 3,75) - со стартером модели 2501.3708-21.

Маховик крепится к коленчатому валу болтами. Под болты устанавливается стальная пластина высокой твердости (одна под все болты). Отсутствие самоотворачивания болтов обеспечивается моментом затяжки 235-255 Н·м (24-26 кгс·м). Для точной фиксации маховика относительно шеек коленчатого вала служат два штифта, при этом, отверстия с маркировкой на маховике и на пластине должны совпадать со смещенным штифтом на коленчатом вале. Смещенный штифт расположен в плоскости первого кривошипа. Маркировка на пластине в виде точки должна быть снаружи.

Двенадцать радиальных отверстий в маховике предназначены для проворачивания коленчатого вала при регулировках двигателя. Доступ к отверстиям возможен при снятой крышке нижнего люка картера маховика.

ШАТУН

Шатун (рис. 10) - стальной, двутаврового сечения, с косым разъемом нижней головки, со скосами на верхней головке, без масляного канала в стержне.

Шатун окончательно обрабатывается в сборе с крышкой, поэтому крышки шатунов невзаимозаменяемы. На крышке и шатуне со стороны короткого болта выбит порядковый номер цилиндра. На стыке со стороны длинного болта выбиты метки спаренности в виде числа, одинакового для шатуна и крышки.

В нижнюю головку шатуна устанавливаются сменные вкладыши, а в верхнюю – запрессована сталебронзовая втулка 7511.1004052-21 с диаметром отверстия под поршневой палец 52 мм. Втулка обрабатывается после запрессовки в шатун.

На двигатели устанавливаются шатуны 7511.1004045-02 (маркировка на стержне 7511.1004045).

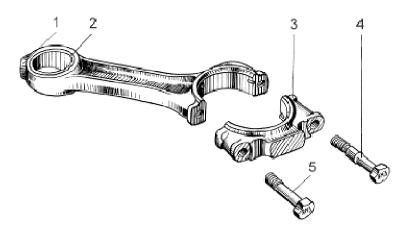


Рис. 10. Шатун:

1 – шатун; 2 – втулка верхней головки; 3 – крышка; 4 – длинный болт крышки; 5 – короткий болт крышки

ВКЛАДЫШИ

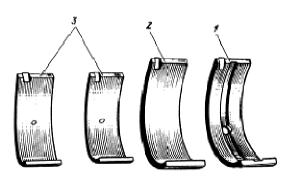


Рис. 11. Вкладыши подшипников коленчатого вала: 1 – верхний вкладыш коренного подшипника; 2 – нижний вкладыш коренного подшипника; 3 – вкладыши нижней головки шатуна

Вкладыши коренных подшипников коленчатого вала и нижней головки шатуна (рис. 11) – сменные, тонкостенные, имеют стальное основание и рабочий слой из свинцовистой бронзы.

Верхний и нижний вкладыши коренного подшипника коленчатого вала не взаимозаменяемы. В верхнем вкладыше имеются отверстие для подвода масла и канавка для его распределения.

Вкладыши нижней головки шатуна взаимозаменяемы.

ГИЛЬЗА, ПОРШЕНЬ, ПОРШНЕВЫЕ И УПЛОТНИТЕЛЬНЫЕ КОЛЬЦА ГИЛЬЗА ЦИЛИНДРОВ

Гильзы цилиндров – «мокрого» типа, изготавливаются из специального чугуна. Гильзы устанавливаются своими посадочными поясами в расточки блока цилиндров и сверху прижимаются через бурт и прокладку головками цилиндров. Выступание бурта гильзы над поверхностью блока цилиндров на двигателях:

ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 —
$$1.6^{+0.035}_{-0.065}$$
 мм. ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д — $0.1^{+0.065}_{-0.035}$ мм.

На двигатели ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д устанавливается гильза 236-1002021-Б2. Поверхности гильзы фосфатированные. Фосфатированный слой улучшает притирочные характеристики, увеличивает износостойкость поверхности, снижает вероятность образования натира. Внешнее отличие фосфатированной гильзы от нефосфатированной - значительно более темный (от темносерого до черного) цвет наружной поверхности.

Верхний торец бурта гильзы выполнен выступающей частью к внутренней поверхности гильзы (под прокладку газового стыка из безасбестового полотна) с высотой бурта 12,1 мм.

В нижней части гильзы выполнены три канавки под антикавитационное и уплотнительные резиновые кольца.

На двигатели ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 устанавливается фосфатированная гильза 7511.1002021-10.

Верхний торец бурта выполнен выступающей частью к наружной поверхности (под металлическую прокладку газового стыка) с высотой бурта 9,6 мм.

Герметичность водяной полости по верхнему посадочному поясу гильзы обеспечивается нанесением на опорную поверхность выточки блока цилиндров под гильзу замкнутого слоя герметика «Локтайт-5900» или «Анатерм-505Д».

Допускается при замене цилиндропоршневой группы уплотнять соединение кольцом 150-155-25-2-5 (код 25 3111 6594) из комплекта гильза-поршень для запасных частей, которое устанавливается в канавку на верхней посадочной поверхности гильзы.

В нижней части гильзы выполнены три канавки под антикавитационное и уплотнительные резиновые кольца.

По наименьшему значению внутреннего диаметра гильзы цилиндров разделены на размерные группы:

Маркировка	Наименьший внутренний диаметр, мм	
A	130,00-130,02	
Б	130,02-130,04	
Ж	130,04-130,06	

Размерная группа маркируется на нерабочей поверхности бурта гильзы.

ПОРШЕНЬ

Поршни (рис. 12) отлиты из эвтектического алюминиевокремнистого сплава. Охлаждение поршня маслом производится из неподвижной форсунки. В днище поршня выполнена камера сгорания.

На двигатели ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 устанавливаются поршни 7511.1004015-10 с 3-я канавками под поршневые кольца (две под компрессионные и одна под маслосъемное).

Канавка под верхнее компрессионное кольцо выполнена во вставке из жаропрочного чугуна (типа «нирезист»).

Камера сгорания смещена на 5 мм внутрь развала блока цилиндров, боковая поверхность с поднутрением, имеет вытеснитель. На днище имеются выточки под клапаны газораспределения. Высота от днища до оси пальца составляет 85 мм. Диаметр отверстия под поршневой палец 52 мм.

На двигатели ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д устанавливаются поршни 7511.1004015-20, отличающиеся от 7511.1004015-10 отсутствием выточек под клапаны газораспределения и глубиной камеры сгорания.

По величине размера юбки на расстоянии 119 мм от днища в плоскости, перпендикулярной оси отверстия под палец, поршни разделены на размерные группы:

	Диаметр юбки поршня, мм	
Маркировка	Обозначение поршней	
	7511.1004015-10; 7511.1004015-20	
АНБ	129,85-129,87	
БНБ	129,87-129,89	
ЖНБ	129,89-129,91	

Размерная группа маркируется на днище поршня.

Для обеспечения точной посадки при сборке поршень и гильза должны подбираться из одних размерных групп.

В разные цилиндры двигателя допускается установка комплектов гильза-поршень разных размерных групп.

Маркировка гильзы	Маркировка поршня
A	АНБ
Б	БНБ
Ж	ЖНБ

ПОРШНЕВЫЕ КОЛЬЦА

Поршневые кольца изготовлены из специального чугуна, разрезные, хромированные, устанавливаются в канавки поршня. В зависимости от выполняемой задачи в рабочем процессе кольца имеют различную конструкцию и устанавливаются на поршень комплектно в определенном порядке.

На поршни устанавливается трехколечный комплект колец 7511.1004002, где:

- первое компрессионное кольцо имеет в сечении двухстороннюю трапецию со смещенной вниз бочкообразной хромированной рабочей поверхностью. Обозначение кольца 7511.1004030.
- второе компрессионное кольцо прямоугольного сечения, минутное с покрытием хромом, с проточкой на нижнем торце с внутренней стороны.
 - Обозначение кольца 7511.1004032-01.
- маслосъемное кольцо коробчатого сечения с хромированными рабочими кромками и витым пружинным расширителем.
 - Обозначение кольца 7511.1004034.

При установке поршневых колец обращать особое внимание на правильность их расположения. Слово " \mathbf{Bepx} " должно быть обращено к днищу поршня.

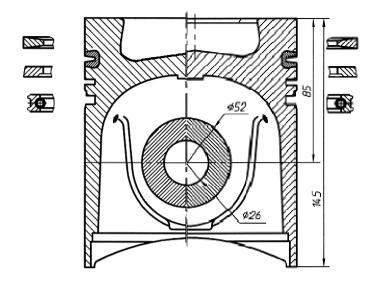


Рис. 13. Поршень, поршневые кольца, палец: слева – поршень 7511.1004015-20, кольца и палец к нему; справа – поршень 7511.1004015-10, кольца и палец к нему

ПОРШНЕВОЙ ПАЛЕЦ

Поршневой палец – пустотелый, плавающего типа с азотированной (обозначение 7511.1004020) или цементированной (обозначение 7511.1004020-03) наружной поверхностью. Палец с наружным диаметром 52 мм устанавливается в отверстие в поршне. Осевое перемещение пальца ограничивается стопорными кольцами, устанавливаемыми в специальные канавки в бобышках поршня.

ВАРИАНТЫ КОМПЛЕКТОВАНИЯ ГИЛЬЗА — ПОРШЕНЬ — КОЛЬЦА ПОРШНЕВЫЕ

По конструктивным особенностям:

Гильза	Комплект колец	Поршень		
Двигатели ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2				
Фосфатированная 7511.1002021-10 (под металлическую прокладку головки цилиндров)	Трёхколечный комплект 7511.1004002	Со смещенной камерой сгорания с выточками под клапаны 7511.1004015-10		
Двигатели ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д				
Фосфатированная 236-1002021-Б2 (под прокладку головки цилиндров из безасбестового полотна)	Трёхколечный комплект 7511.1004002	Со смещенной камерой сгорания без выточек под клапаны 7511.1004015-20		

В эксплуатации при ремонте работавших двигателей допустима установка новых поршневых колец в старую гильзу цилиндра, находящуюся в исправном состоянии

МЕХАНИЗМ ГАЗОРАСПРЕДЕЛЕНИЯ

Механизм газораспределения - верхнеклапанный с нижним, расположением распределительного вала и приводом клапанов через толкатели, штанги и коромысла. Основными деталями механизма газораспределения являются: распределительный вал с шестерней привода и подшипниками, толкатели, оси толкателей, штанги, коромысла с регулировочными винтами, оси коромысел, клапаны, пружины клапанов с деталями крепления и направляющие втулки клапанов (рис. 14).

Привод клапанов осуществляется от распределительного вала через роликовые толкатели 2, трубчатые штанги 3 и коромысла 12 с регулировочными винтами 14.

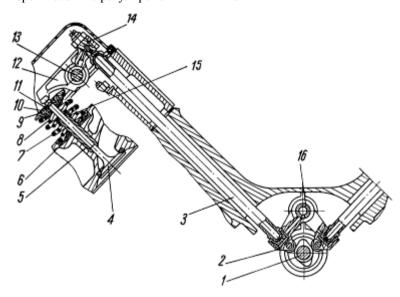


Рис. 14. Механизм газораспределения:

1 — распределительный вал; 2 — толкатель; 3 — штанга толкателя; 4 — клапан; 5 — направляющая втулка клапана; 6 — шайба пружин клапана; 7 — наружная пружина; 8 — внутренняя пружина; 9 — тарелка пружин клапана; 10 — втулка тарелки пружин клапана; 11 — сухарь клапана; 12 — коромысло клапана; 13 — ось коромысла; 14 — регулировочный винт коромысла; 15 — уплотнительная манжета клапана; 16 — ось толкателей

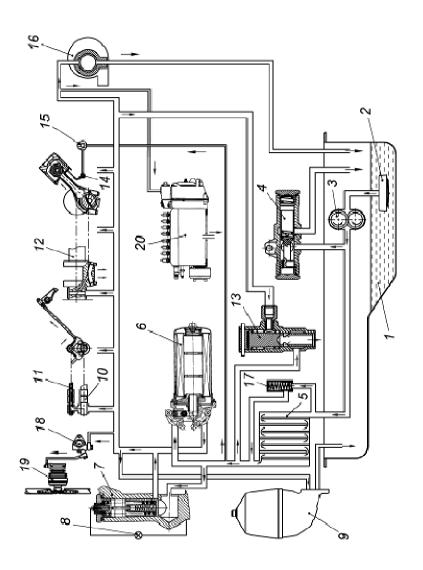
Распределительный вал — стальной, штампованный, опорные шейки и кулачки для повышения износостойкости закалены ТВЧ. Расположен в верхней части картера блока цилиндров и приводится во вращение от переднего конца коленчатого вала через пару косозубых шестерен. Шестерни устанавливаются по меткам, выбитым на торцах зубчатых венцов. Подшипниками распределительного вала служат бронзовые втулки, запрессованные в расточки блока цилиндров. Продольное смещение вала ограничивается стальным упорным фланцем, установленным между ступицей шестерни и передней опорной шейкой вала. После установки распределительного вала с шестерней в блок цилиндров фланец крепится к переднему торцу блока болтами с пружинными шайбами. Осевой люфт вала 0.08...0.21 мм.

Толкатели – стальные, штампованные, качающегося типа с роликом для контакта с кулачками распределительного вала. Ролик установлен на оси, запрессованной в проушины толкателя и закерненной с двух сторон от выпадения. Между осью и роликом установлена «плавающая» втулка из подшипниковой стали. В ступицу толкателя запрессованы две тонкостенные бронзовые втулки, пространство между втулками служит масляной полостью для подвода масла от оси толкателей к штангам. Для сопряжения со штангой в расточку толкателя запрессована стальная закаленная пята.

Оси толкателей. Толкатели подвешены на трубчатых осях, установленных в расточках блока цилиндров в чугунных втулках, из которых передняя запрессована в блок, остальные установлены с зазором. От продольного перемещения оси стопорятся спереди выступом упорного фланца распределительного вала, сзади – картером маховика.

Штанги толкателей – стальные, трубчатые с высаженными на концах сферическими поверхностями. Для повышения износостойкости сферические поверхности закалены ТВЧ.

Коромысла клапанов – стальные, штампованные, с запрессованной в ступицу тонкостенной бронзовой втулкой. На конце длинного плеча коромысла для контакта с клапаном выполнена пята с цилиндрической опорной поверхностью, закаленная ТВЧ. Короткое плечо коромысла оканчивается бобышкой с резьбовым отверстием М12х1, в которое ввернут


регулировочный винт со сферическим гнездом под штангу на одном конце и пазом под отвертку на другом конце. Винт стопорится от отворачивания гайкой.

Коромысла установлены на индивидуальные оси и застопорены от спадания стопорными кольцами с упорными шайбами. Оси коромысел устанавливаются на головку цилиндров по двум цилиндрическим штифтам, запрессованным в оси со стороны опорной поверхности и крепятся к головке цилиндров шпильками с гайками.

Впускные и выпускные клапаны изготовлены из специальных жаропрочных сталей. Рабочая фаска выпускного клапана наплавлена жаропрочным сплавом типа «стеллит», к стержню приварен наконечник из легированной стали. Для повышения износостойкости торцы стержней впускных и выпускных клапанов закалены ТВЧ.

Клапаны перемещаются в металлокерамических направляющих втулках, запрессованных в головку цилиндров. На втулки впускных клапанов установлены уплотнительные манжеты.

Клапаны поджимаются к седлам двумя цилиндрическими винтовыми пружинами, имеющими разное направление навивки. Пружины одним концом упираются в опорные шайбы, установленные в цековки на головке цилиндров, а другим — в тарелку пружин, закрепленную на стержне клапана с помощью промежуточной втулки и двух конических сухарей. Наличие втулки между тарелкой пружин и клапаном способствуют повороту клапанов при работе двигателя и обеспечивает равномерный износ фасок и стержней клапанов в процессе эксплуатации.

Рис. 15. Схема системы смазки двигателя с односекционным масляным насосом и жидкостно-масляным теплообменником:

1 — масляный картер; 2 — маслозаборник; 3 — масляный насос; 4 — редукционный клапан; 5 — жидкостно-масляный теплообменник; 6 — масляный фильтр; 7 — перепускной клапан; 8 — сигнальная лампа фильтра; 9 — фильтр центробежной очистки масла; 10 — распределительный вал; 11 — ось толкателей; 12 — коленчатый вал; 13 — дифференциальный клапан; 14 — форсунка охлаждения поршней; 15 — клапан системы охлаждения поршней; 16 — турбокомпрессор; 17 — перепускной клапан теплообменника; 18 — включатель привода вентилятора; 19 — привод вентилятора; 20 — ТНВД

СИСТЕМА СМАЗКИ

Система смазки двигателя – смешанная, с «мокрым» картером (рис. 15).

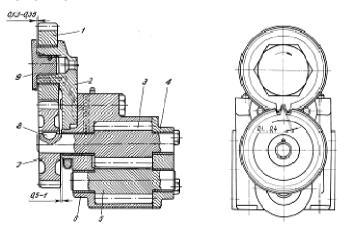


Рис. 16. Масляный насос:

1 — промежуточная шестерня; 2 — ось промежуточной шестерни; 3 — вал-шестерня ведущая; 4 — крышка корпуса; 5 — вал-шестерня ведомая; 6 — корпус; 7 — шестерня привода; 8 — шпонка; 9 — фланец упорный

Масляный насос 238Б-1011014-А производительностью 140 л/мин (рис. 16) через всасывающую трубу с заборником засасывает масло из картера и подает его в систему через последовательно включенный жилкостно-масляный теплообменник.

В корпусе теплообменника (пластинчатого) установлен перепускной клапан. Когда разность давлений до и после теплообменника достигает 274±40 кПа (2,8±0,40 кгс/см²), клапан открывается и часть масла подается непосредственно в масляную магистраль. Из жидкостно-масляного теплообменника масло поступает в каналы блока через дифференциальный клапан, предназначенный для поддержания постоянного давления в системе. При повышении давления свыше 520 кПа (5,2 кгс/см²) часть масла сливается в картер.

Далее через каналы в блоке часть масла через клапан поршней поступает форсункам охлаждения К системы охлаждения поршней и затем сливается в картер. Клапан системы охлаждения поршней прекращает подачу масла к форсункам при давлении масла в системе смазки ниже 130 - 165 кПа (1,30 - 1,65 кгс/см²). Другая часть поступает в масляный фильтр (рис. 17). В корпусе фильтра установлен перепускной клапан. Когда разность давлений до и после фильтра достигает 200 - 250 кПа (2.0 - 2.5 кгс/см2), клапан открывается и часть неочищенного масла подается непосредственно в масляную магистраль. К моменту начала открытия перепускного клапана произойдет замыкание подвижного и неподвижного контактов сигнализатора. В этот момент в кабине водителя загорается сигнальная лампочка, соединенная с клеммой сигнализатора. Такое повышение давления может произойти тогда, когда засорен элемент фильтра или масло имеет большую вязкость (например, при пуске двигателя в холодное время года).

Фильтрующий элемент масляного фильтра изготавливается либо из нетканого материала, натянутого на металлический каркас, либо из специальной фильтровальной бумаги.

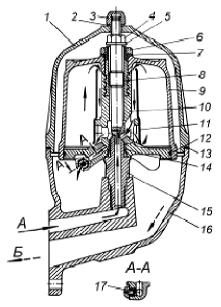
Из фильтра масло поступает в центральный масляный канал, а оттуда через систему каналов в блоке – к подшипникам коленчатого и распределительного валов. От подшипников коленчатого вала через масляные каналы в коленчатом валу и шатунах масло подается к подшипникам верхних головок шатунов. От распределительного вала масло пульсирующим потоком направляется в ось толкателей, а оттуда по каналам толкателей, полостям штанг и коромысел поступает ко всем трущимся парам привода клапанов, а по наружной трубе – к подшипникам турбокомпрессора, регулятора частоты вращения и топливного насоса высокого давления. Под давлением

смазывается также подшипник промежуточной шестерни привода масляного насоса. Шестерни привода агрегатов, кулачки распределительного вала, подшипники качения, гильзы цилиндров смазываются разбрызгиванием.



Рис. 17. Масляный фильтр:

1 – корпус фильтра; 2 – прокладка колпака; 3 – замковая крышка; 4 – колпак фильтра; 5 – фильтрующий элемент; 6 – головка колпака; 7 – прокладка фильтрующего элемента; 8 – плунжер клапана; 9 – пружина клапана; 10 – пружина сигнализатора; 11 – подвижный контакт сигнализатора; 12 – неподвижный контакт; 13 – клемма


На переднем фланце отводящей трубы масляного насоса установлен редукционный клапан, перепускающий масло обратно в картер при давлении на выходе из насоса свыше 700 - 800 кПа $(7.0 - 8.0 \text{ кгс/см}^2)$.

Для стабилизации давления в систему смазки двигателя включен дифференциальный клапан, отрегулированный на начало открытия $490 - 520 \text{ к}\Pi a (4,9 - 5,2 \text{ krc/cm}^2)$.

Контроль давления масла осуществляется в центральном масляном канале.

Фильтр центробежной очистки масла (рис. 18). включенный в смазочную систему параллельно после масляного фильтра, пропускает до 8% масла, проходящего через систему смазки. Фильтр предназначен для тонкой фильтрации масла. Масло очищается под действием центробежных сил вращении ротора. Струи масла, выходящие с большой скоростью из сопла, создают момент, приводящий ротор во вращение. Механические примеси, находящиеся в масле, под действием центробежных сил отбрасываются «к стенке» колпака 9 ротора, образуя на его внутренних поверхностях плотный слой отложений, который следует периодически удалять. Очищенное масло сливается в картер.

Дополнительная центробежная очистка масла производится и в полостях шатунных шеек коленчатого вала.

Рис. 18. Фильтр центробежной очистки масла:

1 — колпак фильтра; 2, 7 — шайбы; 3 — колпачковая гайка; 4 — гайка крепления ротора; 5 — упорная шайба; 6 — гайка ротора; 8, 14 — втулки ротора; 9 — колпак ротора; 10 — ротор; 11 — отражатель; 12 — уплотнительное кольцо; 13 — прокладка колпака; 15 — ось ротора; 16 — корпус фильтра; 17 — сопло ротора; А — из системы под давлением; Б — слив масла в картер

СИСТЕМА ПИТАНИЯ

Топливоподающая аппаратура двигателя — разделенного типа. Она состоит из топливного насоса высокого давления со всережимным регулятором частоты вращения и встроенным корректором для корректирования подачи топлива, топливоподкачивающим насосом, форсунок, фильтров грубой и тонкой очистки топлива, топливопроводов низкого и высокого давления.

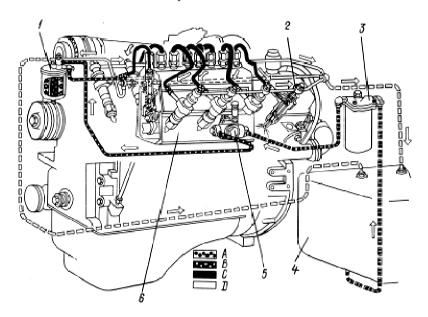


Рис. 19. Схема системы питания:

А – всасывающая магистраль; В – низкое давление; С – высокое давление; D – слив излишков топлива в бак; 1 – фильтр тонкой очистки топлива; 2 – форсунка; 3 – фильтр грубой очистки топлива; 4 – топливный бак; 5 – топливоподкачивающий насос; 6 – топливный насос высокого давления

Из бака через фильтр грубой очистки топливо засасывается топливоподкачивающим насосом и подается в фильтр тонкой очистки и далее к топливному насосу высокого давления. Топливный насос в соответствии с порядком работы цилиндров

подает топливо по топливопроводам высокого давления к форсункам, которые распыливают его в цилиндрах двигателя. Через перепускной клапан в топливном насосе и жиклер в фильтре тонкой очистки излишки топлива, а вместе с ними и попавший в систему воздух отводятся по топливопроводу в топливный бак. Просочившееся в полость пружины форсунки топливо отводится по сливному трубопроводу в бак.

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ

Насос расположен в развале двигателя между рядами цилиндров и имеет шестеренчатый привод. Топливный насос высокого давления — восьмисекционный, по числу цилиндров двигателя.

На двигатели устанавливаются топливные насосы высокого давления различных моделей, имеющие конструктивные и регулировочные отличия (см. раздел «Техническая характеристика»).

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ МОДЕЛИ 173

Топливный насос в сборе показан на рис. 20. С топливным насосом высокого давления в одном агрегате объединены регулятор частоты вращения 5, топливоподкачивающий насос 9 и демпферная муфта 3.

УСТРОЙСТВО И РАБОТА ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ

Топливный насос высокого давления состоит из секций, отдельных насосных элементов, размещенных в общем корпусе. Число секций равно числу цилиндров двигателя.

Устройство секции насоса высокого давления показано на рис. 21.

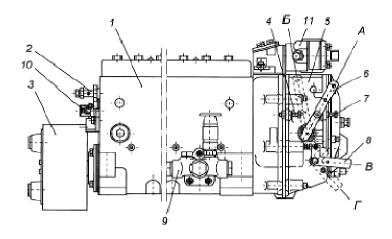


Рис. 20. Топливный насос высокого давления модели 173:

1 – топливный насос высокого давления; 2 – перепускной клапан; 3 – демпферная муфта; 4 – болт ограничения максимальной частоты вращения; 5 – регулятор частоты вращения; 6 – рычаг управления регулятором; 7 – болт ограничения минимальной частоты вращения; 8 – скоба останова; 9 – топливоподкачивающий насос; 10 – болт регулировки пусковой подачи; 11 – корректор подачи топлива по наддуву

A — положение рычага при минимальной частоте вращения холостого хода; B — положение рычага при максимальной частоте вращения холостого хода; B — положение скобы при работе; Γ — положение скобы при выключенной подаче

В корпусе 1 насоса установлены корпуса секций 15 с плунжерными парами, нагнетательными клапанами и штуцерами 11, к которым присоединяются топливопроводы высокого давления. Нагнетательный клапан 9 и седло клапана 8, а также плунжер 6 с втулкой 7 являются прецизионными парами, которые могут заменяться только комплектно. Втулка плунжера стопорится в определенном положении штифтом, запрессованным в корпус секции.

Плунжер 6 приводится в движение от кулачкового вала 19 через роликовый толкатель 17. Пружина 3 через нижнюю тарелку 2 постоянно прижимает ролик толкателя к кулачку, От разворота толкатели, имеющие лыски на боковых поверхностях, удерживаются фиксаторами, запрессованными в корпус насоса.

Конструкция плунжерной пары позволяет дозировать топливо изменением момента начала и конца подачи, Для изменения количества и момента начала подачи топлива плунжер во втулке поворачивается поворотной втулкой 5 (рис. 21), входящей в зацепление с рейкой 16. Регулировка равномерности подачи топлива на максимальном режиме каждой секцией насоса производится разворотом корпуса секции при ослабленных гайках крепления секций. Изменение геометрического начала нагнетания в зависимости от величины подачи (нагрузки двигателя) обеспечивается управляющими кромками, выполненными на торце плунжера.

Работа секции протекает следующим образом. При движении плунжера 6 вниз под действием пружины 3 топливо под небольшим давлением, создаваемым топливоподкачивающим насосом, поступает через продольный канал в корпусе в надплунжерное пространство. При движении плунжера вверх топливо через нагнетательный клапан поступает в топливопровод высокого давления и перепускается в топливоподводящий канал до тех пор, пока торцовая кромка плунжера не перекроет впускное отверстие втулки. При дальнейшем движении плунжера вверх давление в надплунжерном пространстве резко возрастает. Когда давление достигнет такой величины, что превысит усилие, создаваемое пружиной форсунки, игла форсунки поднимется и начнется процесс впрыскивания топлива в цилиндр двигателя. При дальнейшем движении плунжера вверх отсечные кромки плунжера открывают отсечные отверстия во втулке, что вызывает резкое падение давления топлива в линии нагнетания, посадку форсунки на запирающий конус распылителя прекращение подачи топлива в камеру сгорания.

На внутренней поверхности втулки 7 плунжера имеется кольцевая канавка, а в стенке отверстие для отвода топлива, просочившегося через зазор в плунжерной паре. Уплотнение между втулкой плунжера и корпусом секции, корпусом секции и корпусом насоса осуществляется резиновыми кольцами. Из полости вокруг втулки плунжера просочившееся топливо поступает по пазу на втулке плунжера в полость низкого давления корпуса насоса и далее через перепускной клапан и трубопровод в топливный бак.

В нижней части корпуса топливного насоса расположен кулачковый вал.

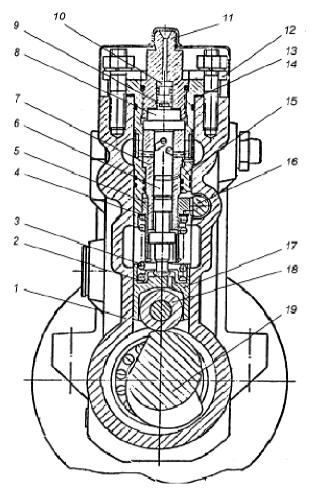


Рис. 21. Секция топливного насоса высокого давления модели 173:

1 — корпус насоса; 2 — нижняя тарелка толкателя; 3 — пружина толкателя; 4 — верхняя тарелка толкателя; 5 — втулка поворотная; 6 — плунжер; 7 — втулка плунжера; 8 — седло клапана нагнетательного; 9 — нагнетательный клапан; 10 — упор клапана; 11 — штуцер; 12 — фланец нажимной; 13,14 — прокладки; 15 — корпус секции; 16 — рейка; 17 — толкатель; 18 — ролик толкателя; 19 — вал кулачковый

Кулачковый вал вращается в роликовых конических подшипниках и промежуточной опоре. Кулачковый вал установлен с натягом 0.01-0.07 мм, который обеспечивается регулировочным и прокладками, установленными между крышкой подшипника и корпусом насоса.

Связь секций с регулятором частоты вращения насоса осуществляется через рейку. Рейка топливного насоса перемещается в направляющих втулках, запрессованных в корпусе насоса. На выступающем из насоса конце рейки имеется болт 10 (рис. 20), которым она упирается в защитный колпачок при положении рейки перед пуском двигателя. При вывертывании болта из рейки пусковая подача уменьшается.

Смазка топливного насоса - централизованная, от масляной системы двигателя. Масло подводится к корректору по наддуву, откуда, сливаясь в полость регулятора, поступает в полость кулачкового вала насоса.

РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ

Регулятор частоты вращения 5 (рис. 20) механический всережимный прямого действия с повышающей передачей на предназначен для поддержания заданного привод грузов, водителем скоростного режима работы двигателя путем автоматического изменения количества подаваемого топлива в зависимости от изменения нагрузки на двигатель. Кроме того, регулятор ограничивает максимальную частоту вращения двигателя и обеспечивает работу двигателя в режиме холостого хода. Регулятор имеет устройство для выключения подачи топлива в любой момент независимо от режима работы двигателя. Автоматически поддерживая скоростной режим при изменяющихся нагрузках, регулятор обеспечивает экономичную работу двигателя. Устройство регулятора частоты вращения показано на рис. 22.

Регулятор расположен на заднем торце топливного насоса высокого давления. На конусе кулачкового вала находится ведущая шестерня 27 с демпфирующим устройством. Вращение от вала насоса на ведущую шестерню передается через резиновые сухари 28. Ведомая шестерня выполнена как одно целое с валиком 29 державки грузов и установлена на двух подшипниках в стакан 30.

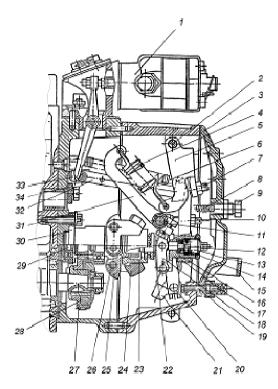


Рис. 22. Регулятор частоты вращения:

1 – корректор подачи топлива по наддуву; 2 – ось двуплечего рычага; 3 – крышка смотрового люка; 4 – пружина регулятора; 5 – двуплечий рычаг; 6 – пружина рычага рейки; 7 – винт двуплечего рычага; 8 – буферная пружина; 9 – корпус буферной пружины; 10 – регулировочный болт; 11 – вал рычага пружины; 12 – отрицательный корректор; 13 – корпус пружины корректора; 14 – пружина отрицательного корректора; 15 – скоба кулисы; 16 – втулка отрицательного корректора; 17 – рычаг регулятора; 18 – рычаг отрицательного корректора; 19 – винт подрегулировки мощности; 20 – рычаг рейки; 21 – кулиса; 22 – пята; 23 – муфта грузов; 24 – грузы регулятора; 25 – державка грузов; 26 – ось грузов; 27 – ведущая шестерня; 28 – сухари; 29 – валик державки грузов; 30 – стакан; 31 – рычаг пружины 32 – тяга рейки; 33 – рейка; 34 – упор

На валик напрессована державка грузов 25 (рис. 22), на осях 26 которой находятся грузы 24. Грузы своими роликами упираются в торец муфты 23, которая через упорный подшипник

и пяту 22 передает усилие грузов рычагу регулятора 17, подвешенному вместе с двуплечим рычагом 5 на общей оси 2.

Муфта 23 с упорной пятой 22 в сборе одним концом опирается на направляющую поверхность державки, а за второй конец подвешена на рычаге 18 отрицательного корректора, закрепленном на втулке 16 отрицательного корректора. Пята муфты грузов связана через узел отрицательного корректора с рычагом рейки 20 и через тягу 32 с рейкой топливного насоса. К верхней части рычага рейки присоединена пружина 6 рычага рейку рейки. удерживающая насоса положении. соответствующем максимальной подаче, что обеспечивает увеличенную подачу топлива при пуске двигателя. В нижнюю часть рычага рейки запрессован палец, который входит в отверстие ползуна кулисы 21. Вал 11 рычага регулятора жестко связан с рычагом управления 6 (рис. 20) и рычагом пружины 31 Перемещение рычага управления регулятором ограничивается двумя болтами 4 и 7 (рис. 20). За рычаг пружины 31 (коротким зацепом) (рис. 22) и двуплечий рычаг 5 (длинным зацепом) зацеплена пружина регулятора 4, усилие которой передается с двуплечего рычага на рычаг регулятора через винт двуплечего рычага. В рычаг регулятора ввернут регулировочный болт 10, который упирается в вал рычага пружины и служит для регулировки номинальной подачи топлива. В нижней части рычага регулятора расположено корректирующее устройство (12,13,14,16,18) с отрицательным корректором, предназначенного для формирования внешней скоростной характеристики ТНВД И крутящего момента двигателя. Рычаг регулятора снабжен боковой накладкой, удерживающей втулку 16 обратного корректора и упорную пяту 22 от проворота. Кроме того, хвостовик болта крепления боковой накладки, входя в боковой продольный паз втулки предохраняет ее от выпадания из расточки рычага. Упор 34, закрепленный на корпусе регулятора, не позволяет рычагу пружины 31 опасно приближаться к вращающимся грузам. Для полного выключения подачи топлива служит механизм останова, состоящий из кулисы 21, скобы 15 и возвратной пружины. Во время работы кулиса прижата усилием возвратной пружины к регулировочному винту 19.

Сзади крышка регулятора закрыта крышкой 3 смотрового люка с буферным устройством, состоящим из корпуса 9 и

пружины 8, которая, сглаживая колебания рычага 17 регулятора, обеспечивает устойчивую работу двигателя на холостом ходу.

Принцип действия регулятора частоты вращения основан на взаимодействии центробежных сил грузов и усилий пружин с различной предварительной деформацией.

На неработающем двигателе грузы регулятора находятся в сведенном положении, а рейка 33 под действием пружины 6 рычага рейки находится в положении максимальной подачи (крайнее левое положение).

При пуске двигателя, когда частота вращения коленчатого вала достигнет 460...500 мин⁻¹ (рычаг управления упирается в болт ограничения минимального скоростного режима), грузы регулятора под действием центробежной силы преодолевают сопротивление пружины рычага рейки и сдвигают через муфту грузов 23 рычаг рейки 32 до упора втулки 16 отрицательного регулятора. Далее. корректора рычаг преодолевая сопротивление буферной пружины 8, грузы перемещают вправо всю систему рычагов и рейку ТНВД до установления цикловой ТНВД, соответствующей минимальному секции скоростному режиму (режиму минимальной частоты вращения холостого хода).

При нажатии на педаль управления рычаг управления регулятором и жестко связанный с ним рычаг 31 пружины поворачиваются на определенный угол, что приводит к увеличению натяжения пружины регулятора. Под воздействием пружины рычаг 17 регулятора перемещает систему рычагов, муфту грузов и рейку в сторону увеличения подачи, и обороты коленчатого вала двигателя возрастают. Это происходит до тех пор, пока центробежная сила грузов не уравновесит силу натяжения пружины 4, т.е. до устойчивого режима работы двигателя. Таким образом, каждому положению рычага управления регулятором соответствует определенное число оборотов двигателя.

При уменьшении суммарного момента сопротивления движению автомобиля, частота вращения коленчатого вала двигателя увеличивается. В этом случае центробежная сила грузов возрастает. Грузы расходятся и, преодолевая усилие пружины регулятора, перемещают муфту грузов 23 и пяту 22. При этом система рычагов и рейка перемещаются в сторону уменьшения подачи (вправо) до тех пор, пока не установится

число оборотов двигателя, заданное положением рычага управления, т.е. пока не наступит равновесие между центробежной силой грузов и силой пружины регулятора.

При увеличении суммарного момента сопротивления движению автомобиля частота вращения коленчатого вала уменьшается, следовательно, уменьшается и центробежная сила грузов регулятора. Усилием пружины 4 регулятора система рычагов, пята и муфта грузов переместятся влево и передвинут рейку влево, в сторону увеличения подачи. Подача топлива секциями увеличивается до тех пор, пока частота вращения коленчатого вала двигателя не достигнет величины, заданной положением рычага управления регулятором.

Остановка двигателя осуществляется поворотом скобы кулисы 15 вниз. При этом кулиса 21 и нижний конец рычага 20 рейки поворачиваются влево, рейка насоса выдвигается в крайнее положение, и подача топлива прекращается.

Отрицательный корректор (12, 13, 14, 16, 18) обеспечивает постепенное уменьшение цикловой подачи топлива при уменьшении частоты вращения кулачкового вала насоса до 500 мин⁻¹ и тем самым обеспечивает бездымную работу двигателя.

При частоте вращения коленчатого вала, соответствующей номинальной, центробежная сила грузов превышает усилие предварительной затяжки пружины 14 корректора, и пята через корректор 12 и втулку 16 упирается в главный рычаг регулятора. При снижении частоты вращения кулачкового вала ТНВД усилие пружины корректора становится достаточным для преодоления силы грузов. При этом корректор 12 выдвигается из втулки 16 и, перемещая муфту грузов и систему рычагов, сдвигает рейку ТНВД в сторону уменьшения цикловой подачи топлива. Частота вращения кулачкового вала, соответствующая моменту начала работы корректора, т.е. моменту начала выдвижения корректора из втулки, регулируется предварительным сжатием пружины 14.

Чем меньше частота вращения, тем больше величина выступания корректора из втулки и тем больше величина ограничения цикловой подачи топлива. При 500 мин⁻¹ величина ограничения цикловой подачи топлива наибольшая, ее значение определяется максимальной величиной выступания корректора.

Регулятор частоты вращения оснащен корректором подачи топлива по наддуву 1 для снижения теплонапряженности и дымности отработавших газов дизеля на малых частотах

вращения и переходных режимах. Кроме того, корректор защищает двигатель в аварийных ситуациях, возникающих при отказах системы турбонаддува. Принцип действия корректора по наддуву заключается в том, что при снижении давления наддувного воздуха, он воздействует на рейку топливного насоса, уменьшая подачу топлива.

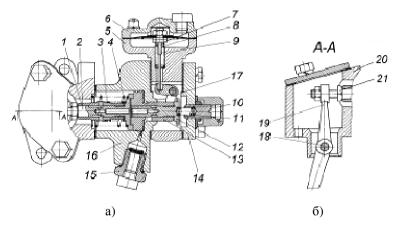


Рис. 23. Корректор подачи топлива по наддуву: а) горизонтальный разрез; б) вертикальный разрез

1 — гильза упора; 2 — упор; 3 — пружина гильзы; 4 — пружина поршня; 5 — корпус мембраны; 6 — крышка мембраны; 7 — контргайка штока мембраны; 8 — пружина; 9 — шток с мембраной; 10 — корпус пружины корректора; 11 — пружина корректора; 12 — золотник; 13 — поршень; 14 — крышка корректора; 15 — штуцер подвода масла; 16 — корпус корректора; 17 — рычаг; 18 — ось рычага; 19 — рычаг; 20 — проставка; 21 — регулировочный болт рычага

Корректор подачи топлива по наддуву (рис. 23) установлен на верхней части корпуса регулятора. К проставке 20 с помощью болтов крепятся корпус корректора 16, корпус мембраны 5 и крышка корректора 14. Внутри корпуса корректора расположена пара поршень 13 и золотник 12. Через упор 2 поршень поджимается пружиной 4 к корпусу корректора. На упоре установлена гильза 1 упора, которая пружиной 3 постоянно поджимается к регулировочному болту 21 рычага 19. Рычаг установлен на оси 18 в проставке. На одном конце рычага расположен регулировочный болт с гайкой, а другой конец при

работе корректора непосредственно воздействует на рейку ТНВД. В корпусе мембраны располагается выполненная из специальной ткани мембрана в сборе со штоком 9, закрытая крышкой 6. В крышке выполнено отверстие для подвода воздуха от впускного коллектора двигателя. Рычаг 17, установленный на оси, служит для передачи движения от штока к золотнику 12. В золотник упирается пружина корректора 11. Для изменения ее предварительного сжатия в крышку 14 корректора ввернут корпус 10 пружины. На корпус навернута контргайка и колпачок. В корпус корректора ввернут штуцер 15 подвода масла из системы смазки двигателя.

Уплотнение сопряженных деталей корректора по наддуву осуществляется с помощью паронитовых прокладок.

При неработающем двигателе давление масла в системе смазки и воздуха во впускных корректорах отсутствует. Пружина 4 поджимает поршень 13 с упором 2 к корпусу корректора 16. Пружина корректора 11 поджимает золотник 12 и шток 9 с мембраной до упора в крышку мембраны.

При пуске двигателя масло из системы смазки двигателя через ввертыш 15 начинает поступать в поршневую полость корректора и через открытые сливные окна поршня, осевые каналы золотника, поршня и упора сливается в полость регулятора.

При выходе двигателя на режим холостого хода рейка ТНВД перемещается из стартового положения в сторону уменьшения подачи. Вслед за рейкой под действием пружины 3 перемещается гильза 1, поворачивая рычаг 19. Перемещение гильзы относительно упора приводит к перекрытию сливных окон упора, в результате чего свободный слив прекращается, давление масла в подпоршневой полости увеличивается; и поршень начинает перемещаться влево в свое рабочее положение. Перемещение поршня продолжается до момента открытия сливных окон поршня торцовой рабочей кромкой золотника.

При работе двигателя под нагрузкой и увеличении частоты вращения коленчатого вала давление воздуха в полости мембраны увеличивается. Мембрана деформируется, шток перемещает рычаг 17 корректора, который в свою очередь сдвигает золотник корректора вправо. При этом площадь проходного сечения, через которые происходит перетекание масла из подпоршневой полости в осевой канал поршня

увеличивается, давление масла в подпоршневой полости уменьшается, и поршень вместе с упором под действием пружины смещается вправо, восстанавливая свое положение относительно золотника. Вслед за поршнем и упором под действием стартовой пружины, перемещается рейка ТНВД. Таким образом, увеличение давления воздуха в полости мембраны приводит к увеличению цикловой подачи топлива. Перемещение рейки сопровождается поворотом рычага 19, при этом величина перемещения рейки и изменения цикловой подачи определяется величиной перемещения поршня и упора.

При уменьшении частоты вращения коленчатого вала давление турбокомпрессора падает, уменьшается давление в полости мембраны, золотник 12 под действием пружины 11 смещается влево и рабочая кромка торцевой поверхности золотника перекрывает сливные окна поршня. В подпоршневой полости давление масла растет, поршень сдвигается влево до момента открытия сливных окон и через упор 2 и рычаг 19 сдвигает рейку в сторону уменьшения подачи.

Таким образом, изменение давления воздуха в полости мембраны приводит к изменению положения золотника, поршень автоматически отслеживает положение золотника и обеспечивает соответствующее перемещение рейки ТНВД. Величина перемещения рейки и изменение цикловой подачи определяется величиной перепада давления в полости мембраны и характеристикой пружины корректора.

При увеличении давления надува около 0,06 МПа $(0.6 \ \text{кгc/cm}^2)$ ограничение подачи корректором снимается.

При останове двигателя корректор обеспечивает автоматическое включение пусковой подачи.

Демонтаж корректора по наддуву вместе с проставкой 20 в эксплуатации не рекомендуется, так как затем возможна неправильная установка рычага 19 относительно рейки, ведущая к разносу двигателя.

В случае необходимости демонтажа (например, при ремонте) при последующей установке корректора на регулятор отвести скобой кулисы останова рейку насоса в положение выключенной подачи и вставить корректор проставкой в корпус регулятора. Затем отпустить скобу кулисы. После этого необходима проверка регулировки корректора по наддуву, а также проверка регулятора на выключение подачи топлива.

ОСНОВНЫЕ РЕГУЛИРОВКИ, ПРЕДУСМОТРЕННЫЕ КОНСТРУКЦИЕЙ РЕГУЛЯТОРА ЧАСТОТЫ ВРАЩЕНИЯ

- 1. Минимальная частота вращения холостого хода регулируется болтом 7 (рис. 20) и корпусом буферной пружины 9 (рис. 22);
- 2. Максимальная частота вращения холостого хода (начало выброса рейки) регулируется болтом 4 (рис. 20).
- 3. Номинальная мощность (подача) регулируется болтом 10, подрегулируется винтом 19 (рис. 22).
- 4. Предварительное натяжение пружины (разность оборотов конца и начала выброса рейки) регулируется винтом 7 (рис. 22).
- 5. Подача топлива при 500 мин⁻¹ регулируется гайкой обратного корректора 12 (рис. 22):
- 6. Предварительное натяжение пружины обратного корректора (обороты начала срабатывания корректора) регулируется корпусом корректора 13 (рис. 22).

К особенностям регулировки следует отнести то, что для обеспечения уменьшенного усилия на рычаге управления рычаг пружины при регулировке частоты вращения начала действия регулятора должен быть максимально приближен к упору в корпусе регулятора, ограничивающему его поворот. Подрегулировку начала действия регулятора производить винтом двуплечего рычага

ДЕМПФЕРНАЯ МУФТА

Топливный насос высокого давления комплектуется демпферной муфтой, которая устанавливается на конической поверхности переднего конца кулачкового вала с натягом, создаваемым кольцевой гайкой и фиксируется от проворота шпонкой. Демпферная муфта предназначена для защиты механизмов от разрушения.

Демпферная муфта представляет собой неразборную конструкцию со свободно вращающимся маховиком в специальной высоковязкой жидкости.

Вмятины на корпусе муфты выводят ее из строя.

ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ МОДЕЛЕЙ 806 И 807

Топливный насос в сборе показан на рис. 24. С топливным насосом высокого давления в одном агрегате объединены регулятор частоты вращения 5, топливоподкачивающий насос 9 и муфта опережения впрыска топлива 4.

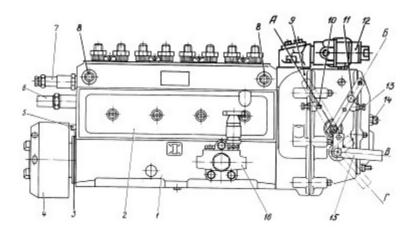


Рис. 24. Топливный насос высокого давления моделей 806 и 807:

1 — топливный насос высокого давления; 2 — боковая крышка; 3 — регулировочные прокладки; 4 — муфта опережения впрыскивания топлива; 5 — указатель; 6 — колпачок рейки топливного насоса; 7 — перепускной клапан; 8 — пробки для выпуска воздуха; 9 — регулятор частоты вращения; 10 — болт ограничения максимальной частоты вращения; 11 — рычаг управления регулятором; 12 — корректор подачи топлива по наддуву; 13 — болт ограничения минимальной частоты вращения; 14 — корпус буферной пружины; 15 — скоба останова: 16 — насос топливополкачивающий.

А – положение рычага при максимальной частоте вращения холостого хода:

Б – положение рычага при минимальной частоте вращения холостого хода;

В – положение скобы при работе;

Г – положение скобы при выключенной подаче

УСТРОЙСТВО И РАБОТА ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ

Топливный насос высокого давления состоит из секций, отдельных насосных элементов, размещенных в общем корпусе. Число секций равно числу цилиндров двигателя.

Устройство секции топливного насоса показано на рис. 25.

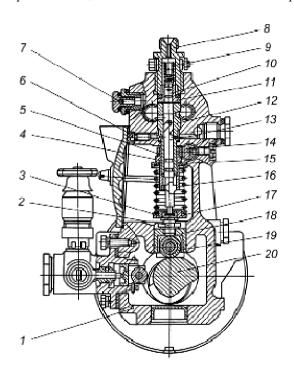


Рис. 25. Секция топливного насоса высокого давления:

1 — корпус насоса; 2 — контргайка; 3 — регулировочный болт; 4 — втулка поворотная; 5 — зубчатый венец; 6 — установочный винт; 7 — пробка для выпуска воздуха; 8 — штуцер; 9 — пружина нагнетательного клапана; 10 — нагнетательный клапан; 11 — корпус нагнетательного клапана; 12 — втулка плунжера; 13 — плунжер; 14 — рейка; 15 — тарелка верхняя пружины; 16 — пружина толкателя; 17 — тарелка нижняя пружины; 18 — толкатель; 19 — ролик толкателя; 20 — вал кулачковый

В корпусе 1 насоса установлены плунжерные пары, нагнетательные клапаны 10 и штуцеры 8, к которым подсоединяются трубопроводы высокого давления. Нагнетательный клапан 10 и корпус клапана 11, а также плунжер 13 с втулкой 12 являются прецизионными парами, которые могут заменяться только комплектно. Втулка плунжера от разворота фиксируется винтом 6.

Плунжер 13 приводится в движение от кулачкового вала 20 через роликовый толкатель 18. Пружина 16 через нижнюю тарелку 17 постоянно прижимает толкатель к кулачку. От проворота толкатель фиксируется сухарем толкателя, который входит в паз на расточке корпуса насоса. В толкатель ввернут регулировочный болт 3, который стопорится контргайкой 2 и служит для регулировки начала подачи топлива.

Конструкция плунжерной пары позволяет дозировать топливо изменением момента подачи при постоянном ее начале. Для изменения количества подаваемого топлива плунжер во втулке 12 поворачивается поворотной втулкой 4 с зубчатым венцом 5, входящим в зацепление с рейкой 14.

Угловым смещением поворотной втулки относительно зубчатого венца при ослабленном винте регулируется подача топлива каждой секцией насоса.

В верхней части корпуса насоса имеются подводящий и отводящий каналы, по которым топливо поступает к плунжерным парам. Со стороны регулятора каналы заглушены пробками с уплотнительными резиновыми кольцами, со стороны привода соединены между собой поперечным каналом. Подводящий и отводящий топливопроводы присоединяются к насосу высокого давления со стороны привода. Отверстие для выпуска воздуха закрыто пробкой 7 (рис 25).

Работа секции протекает следующим образом. При движении плунжера 13 вниз под действием пружины 16 топливо под небольшим давлением, создаваемым топливоподкачивающим насосом в топливоподводящем канале корпуса насоса, поступает в надплунжерное пространство. При движении плунжера вверх топливо перепускается обратно в топливный канал до тех пор, пока торцовая кромка плунжера не перекроет впускное отверстие втулки. При дальнейшем движении плунжера вверх давление в надплунжерном пространстве возрастает. Когда давление достигнет величины, превышающей усилие, создаваемое

пружиной форсунки, игла форсунки поднимется и начнется процесс впрыскивания топлива в камеру сгорания цилиндра двигателя. При дальнейшем движении плунжера вверх спиральная отсечная кромка плунжера открывает отсечное отверстие во втулке, что вызывает резкое падение давления топлива в линии нагнетания.

При этом нагнетательный клапан 10 с разгрузочным пояском после посадки на запирающий конус корпуса клапана 11 под действием пружины 9 увеличивает объем в топливопроводе между форсункой и клапаном. Этим достигается четкая отсечка подачи топлива.

Количество подаваемого топлива дозируется изменением момента конца подачи при постоянном его начале. При перемещении рейки плунжер поворачивается, и отсечная кромка открывает отверстие втулки раньше или позже, вследствие чего изменяется продолжительность подачи, а, следовательно, и количество подаваемого топлива.

На поверхности плунжера имеется кольцевая канавка, а в стенке втулки плунжера - радиальное отверстие для отвода топлива, просочившегося через зазор в плунжерной паре. Уплотнение между втулкой плунжера и корпусом насоса осуществляется резиновым кольцом. Из полости вокруг втулки плунжера просочившееся топливо отводится в дренажный канал, проходящий вдоль корпуса насоса, и далее через дренажный трубопровод в топливный бак.

В нижней части корпуса насоса расположен кулачковый вал. Кулачковый вал вращается в роликовых конических подшипниках и имеет промежуточную опору. Осевой люфт кулачкового вала в пределах 0,01...0,07 мм обеспечивается регулировочными прокладками, установленными между крышкой подшипника и корпусом насоса.

Связь секций с регулятором частоты вращения насоса осуществляется через рейку. Рейка топливного насоса перемещается в направляющих втулках, запрессованных в корпус насоса. Выступающий из насоса конец рейки закрыт колпачком 6 рейки топливного насоса (рис. 24).

Смазка топливного насоса - централизованная, от масляной системы двигателя. Масло подводится к корректору по наддуву, откуда, сливаясь в полость регулятора, поступает в полость кулачкового вала насоса.

РЕГУЛЯТОР ЧАСТОТЫ ВРАЩЕНИЯ

Регулятор частоты вращения 9 (рис. 24) - механический всережимный прямого действия с повышающей передачей на привод грузов, с устройствами для корректирования подачи топлива и предназначен для поддержания заданного водителем скоростного режима работы двигателя путем автоматического изменения количества подаваемого топлива в зависимости от изменения нагрузки на двигатель. Кроме этого, регулятор ограничивает максимальную частоту вращения двигателя и обеспечивает работу двигателя в необходимом режиме. Регулятор имеет устройство для выключения подачи топлива в любой момент независимо от режима работы двигателя. Автоматически поддерживая скоростной режим при изменяющихся нагрузках, регулятор обеспечивает экономичную работу двигателя.

Регулятор закреплен на заднем торце топливного насоса высокого давления.

Устройство регулятора частоты вращения показано на рис. 26.

На конусе кулачкового вала установлена ведущая шестерня 25. Вращение от вала насоса на ведущую шестерню передается через резиновые сухари 26, которые сглаживают неравномерное вращение вала насоса. Ведомая шестерня выполнена как одно целое с валиком 27 державки грузов и установлена на двух шарикоподшипниках в стакан 28.

На валик напрессована державка грузов 24, на осях 23 которой качаются грузы 21. Грузы своими роликами упираются в торец муфты 22, которая через упорный подшипник и пяту 20 передает усилие рычагу регулятора 7, подвешенному вместе с двуплечим рычагом 4 на общей оси 2.

Муфта с упорной пятой в сборе одним концом опирается на направляющую поверхность державки, а за второй конец повешена на серьге 12, закрепленной на рычаге регулятора. Пята регулятора связана общей осью с рычагом 18 рейки и через тягу 29 - с рейкой топливного насоса.

К верхней части рычага рейки присоединена пружина 31 рычага рейки, а в нижнюю часть запрессован палец, который входит в паз кулисы 19.

Вал 11 жестко связан с рычагом управления 11 (см. рис 24) и рычагом 30 пружины. За рычаг зацеплена пружина 3 регулятора, усилие которой передается с двуплечего рычага на рычаг регулятора через регулировочный винт 6.

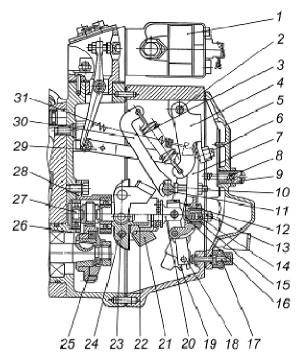


Рис. 26. Регулятор частоты вращения:

1 — корректор подачи топлива по наддуву; 2 — ось двуплечего рычага; 3 — пружина регулятора; 4 — рычаг двуплечий; 5 — крышка смотрового люка; 6 — винт регулировочный; 7 — рычаг регулятора; 8 — буферная пружина; 9 — корпус буферной пружины; 10 — регулировочный болт; 11 — вал рычага пружины; 12 — серьга регулятора; 13 — корректор; 14 — пружина корректора; 15 — корпус пружины корректора; 16 — комплект шайб; 17 — винт подрегулировки мощности; 18 — рычаг рейки; 19 — кулиса; 20 — пята; 21 — грузы регулятора; 22 — муфта грузов; 23 — ось грузов; 24 — державка грузов; 25 — ведущая шестерня; 26 — сухари; 27 — валик державки грузов; 28 — стакан; 29 — тяга рейки; 30 — рычаг пружины; 31 — пружина рычага рейки

На рычаге регулятора имеется регулировочный болт 10, который упирается в вал рычага пружины.

В нижней части рычага регулятора находится положительный корректор (поз. 13-16), предназначенный для повышения тяговых качеств двигателя и снижения дымности

отработавших газов. Положительный корректор состоит из корректора 13, пружины 14, корпуса пружины корректора 15 и комплекта шайб 16.

Подача топлива полностью выключается механизмом останова, состоящим из кулисы 19, скобы останова 15 (рис. 24) и возвратной пружины, расположенной за скобой останова под крышкой.

Кулиса со скобой останова соединяется пружиной, расположенной внутри кулисы и предохраняющей механизм регулятора от чрезмерных усилий при выключении подачи топлива. Во время работы двигателя кулиса прижата усилием возвратной пружины к регулировочному винту 17 (рис. 26).

Сзади регулятор частоты вращения закрыт крышкой 5 смотрового люка с буферным устройством, которое обеспечивает устойчивую работу двигателя на режиме минимального холостого хода. Буферное устройство состоит из пружины 8, корпуса 9 и контргайки.

Регулятор частоты вращения оснащен корректором подачи топлива по наддуву для снижения теплонапряженности и дымности отработавших газов дизеля на малых частотах вращения и переходных режимах.

Корректор подачи топлива по наддуву обеспечивает оптимальную величину подачи топлива в зависимости от давления воздуха, подаваемого турбокомпрессором в цилиндры двигателя. Кроме того, корректор защищает двигатель в аварийных ситуациях, возникающих при отказах системы турбонаддува. Принцип действия корректора по наддуву заключается в том, что при снижении давления наддувного воздуха, он воздействует на рейку топливного насоса, изменяя подачу топлива.

Корректор подачи топлива по наддуву 12 (рис. 24) закреплен сверху на корпусе регулятора топливного насоса.

Принцип действия и работа корректора по наддуву аналогичны как на топливном насосе высокого давления модели 173 и приводятся на страницах 55 - 57.

Устройство корректора по наддуву показано на рис. 23.

ОСНОВНЫЕ РЕГУЛИРОВКИ, ПРЕДУСМОТРЕННЫЕ КОНСТРУКЦИЕЙ РЕГУЛЯТОРА ЧАСТОТЫ ВРАЩЕНИЯ

- 1. Минимальная частота вращения холостого хода регулируется болтом ограничения минимальной частоты вращения 13 (рис. 24) и корпусом буферной пружины 9 (рис. 26).
- 2. Максимальная частота вращения холостого хода (начало выброса рейки) регулируется болтом ограничения максимальной частоты вращения 10 (рис. 24).
- 3. Номинальная мощность (подача) регулируется регулировочным болтом 10 (рис. 26), подрегулировка мощности производится винтом подрегулировки мощности 17.
- 4. Предварительное натяжение пружины (разность оборотов конца и начала выброса рейки) регулируется винтом регулировочным 6 (рис. 26).
- 5. Мощность (подача) при максимальном крутящем моменте регулируется корректором 13 (рис. 26).

МУФТА ОПЕРЕЖЕНИЯ ВПРЫСКИВАНИЯ ТОПЛИВА

Муфта опережения впрыскивания топлива 4 (рис. 24) предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя.

Применение муфты опережения впрыскивания топлива значительно улучшает пусковые качества двигателя и способствует получению наилучшей экономичности на различных скоростных режимах.

Устройство муфты показано на рис. 27.

На конической поверхности переднего конца кулачкового вала насоса при помощи шпонки и кольцевой гайки закреплена ведомая полумуфта 3. Ведущая полумуфта 6 устанавливается на ступицу ведомой и может поворачиваться на ней. Вращение с ведущей полумуфты на ведомую передается через два груза 10. Грузы качаются на двух осях 5, запрессованных в ведомую полумуфту, в плоскости, перпендикулярной оси вращения муфты. Пальцы ведущей полумуфты через проставки 9 упираются в

профильные выступы на грузах и прижимаются к ним усилием двух пружин 13. Каждая из них установлена между осью и пальцем и упирается в площадки на пальце и оси. Усилие пружин стремится удержать грузы на упоре во втулку ведущей полумуфты.

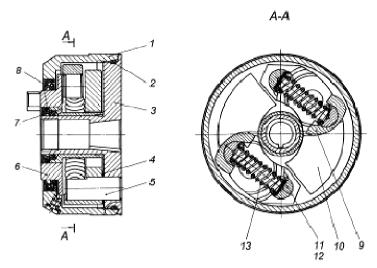
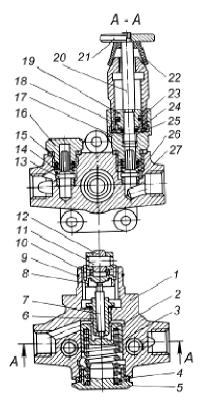


Рис. 27. Муфта опережения впрыскивания топлива: 1 – корпус; 2 – кольцо уплотнительное; 3 – ведомая полумуфта; 4 – шайба; 5 – ось груза; 6 – ведущая полумуфта; 7,8 – манжеты; 9 – проставка; 10 – груз; 11,12 – шайбы регулировочные; 13 – пружина


При вращении муфты под действием центробежных силы грузы 10 расходятся, вследствие чего ведомая полумуфта 3 поворачивается относительно ведущей в направлении вращения вала насоса, что вызывает увеличение угла кулачкового опережения впрыскивания топлива. При уменьшении частоты вращения грузы сходятся. Пружины поворачивают совместно с валом насоса ведомую полумуфту относительно полумуфты В сторону, противоположную вращению, вызывает уменьшение угла опережения впрыскивания топлива.

ТОПЛИВОПОДКАЧИВАЮЩИЙ НАСОС

Топливоподкачивающий насос 9 или 16 (рис. 20 или 24) – поршневого типа предназначен для подачи топлива из топливного бака через фильтры грубой и тонкой очистки к топливному насосу высокого давления.

Производительность топливоподкачивающего насоса в 3-4 раза превышает производительность топливного насоса высокого давления, что гарантирует стабильность процесса топливоподачи от цикла к циклу.

Устройство насоса показано на рис. 28.

Рис. 28. Топливоподкачивающий насос:

1 – корпус; 2 – поршень; 3 – пружина поршня; 4 – уплотнительное кольцо; 5, 16 – пробки; 6 – втулка штока; 7 – шток толкателя; 8 – толкатель; 9 - стопорное кольцо толкателя; 10 - сухарь толкатели; 11 - ось ролика; 12 - ролик; 13 нагнетательный клапан: 14 - пружина клапана; 15 - уплотнительные шайбы; 17 – корпус цилиндра; 18 – цилиндр; 19 – поршень; 20 – шток; 21 – рукоятка; 22 – защитный колпачок; 23, 24, 25 уплотнительные кольца; 26 всасывающий клапан; 27 - седло клапана

Топливоподкачивающий насос крепится тремя болтами с левой стороны на корпусе топливного насоса высокого давления и приводится в действие от эксцентрика кулачкового вала через роликовый толкатель.

В корпусе 1 (рис. 28) насоса размещены поршень 2, пружина 3 поршня, упирающаяся с одной стороны в поршень, а с другой – в пробку 5, всасывающий 26 и нагнетательный 13 клапаны, прижимаемые к седлам 27 пружинами 14.

Полость корпуса насоса, в которой перемещается поршень, соединена каналами с полостями над всасывающим и под нагнетательным клапанами. Привод поршня осуществляется толкателем 8 через шток 7. Ролик толкателя вращается на плавающей оси 11, застопоренной двумя сухарями 10 от продольного перемещения. Одновременно сухари толкателя, перемещаясь в пазах корпуса 1, предохраняют толкатель от разворота. Шток 7 перемещается в направляющей втулке 6, которая ввернута в корпус насоса на специальном клее. Шток и втулка представляют собой прецизионную пару.

Для нагнетания топлива при неработающем двигателе насос оборудуется ручным топливопрокачивающим насосом. Этот насос используется для удаления воздуха из топливной системы перед пуском двигателя, а также для заполнения топливом всей магистрали при техническом обслуживании топливной аппаратуры.

ФОРСУНКА

Форсунка – закрытого типа, с многодырчатым распылителем и гидравлическим управлением подъема иглы.

На двигатели устанавливаются форсунки нескольких моделей (см. раздел «Техническая характеристика»), имеющие конструктивные и регулировочные отличия.

ФОРСУНКИ МОДЕЛИ 267-01 И 204-50.01

Все детали форсунок собраны в корпусе 7 (рис. 29). К нижнему торцу корпуса форсунки гайкой 5 присоединяются проставка 3 и распылитель (мод. 335.1112110-50 и 204.1112110-50.01 соответственно). Взаимное расположение корпуса форсунки, проставки и распылителя определяется штифтами, запрессованными в проставке.

Внутри корпуса 1 распылителя находится запорная игла 2. Корпус и игла составляют прецизионную пару.

Распылитель имеет пять распыливающих отверстий. Усилие затяжки пружины 6 (давление начала впрыскивания) регулируется винтом 12, ввернутым в корпус форсунки. Винт фиксируется гайкой 10.

Для форсунки модели 204-50.01 усилие затяжки пружины 6 регулируется регулировочными шайбами, установленными в корпус форсунки.

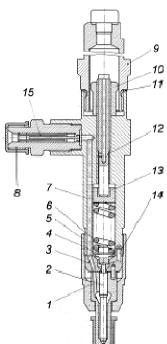
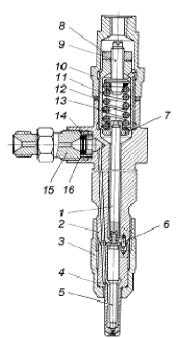


Рис. 29. Форсунка:

1 – корпус распылителя; 2 – игла распылителя; 3 – проставка; 4 – штанга; 5 – гайка распылителя; 6 – пружина; 7 – корпус; 8 – штуцер с фильтром; 9 – колпак; 10 – гайка; 11 – шайба; 12 – регулировочный винт; 13 – тарелка пружины; 14 – штифт; 15 – щелевой фильтр


Топливо подводится к форсунке через штуцер 8 ввернутый в корпус форсунки. В штуцер запрессован стержень щелевого фильтра 15. Топливо, просочившееся через зазор между иглой и корпусом распылителя, отводится из форсунки через полость пружины и отверстия в регулировочном винте и колпачке 9.

Форсунка устанавливается в стакан головки цилиндров. Под торец гайки распылителя подкладывается медная гофрированная шайба для уплотнения от прорыва газов.

ФОРСУНКА МОДЕЛИ 261-13 (12)

Все детали форсунки (рис. 30) собраны в корпусе 2. К нижнему торцу корпуса форсунки гайкой 3 присоединяется корпус 4 распылителя, внутри которого находится запорная игла 5. Игла и корпус распылителя составляют прецизионную пару, которая может заменяться только комплектно. Распылитель (мод. 33.1112110-230) имеет четыре распыливающих отверстия и фиксируется относительно корпуса двумя штифтами 6.

Штанга 1 своим нижним концом упирается в хвостовик иглы распылителя. Сверху на штангу напрессована тарелка 7, в которую упирается пружина 13 форсунки. Усилие предварительной (давление затяжки пружины начапа впрыскивания) регулируется винтом 9, ввернутым в гайку пружины 11. Винт фиксируется контргайкой 8. На гайку пружины навернут колпак 10 с уплотнительной шайбой 12.

Топливо подводится к форсунке через штуцер 15, в который установлена втулка 14, поджимающая сетчатый фильтр 16. Топливо, просочившееся через зазор между иглой и корпусом распылителя, отводится из форсунки через дренажный топливопровод.

Форсунка устанавливается в латунный стакан головки цилиндров. Под торец гайки распылителя подкладывается медная гофрированная шайба для уплотнения от прорыва газов.

Рис. 30. Форсунка:

1 — штанга; 2 — корпус; 3 — гайка распылителя; 4 — корпус распылителя; 5 — игла распылителя; 6 — штифт; 7 — тарелка пружины; 8 — контргайка; 9 — регулировочный винт; 10 — колпак; 11 — гайка пружины; 12 — шайба; 13 — пружина; 14 — втулка; 15 — штуцер; 16 — фильтр

ФИЛЬТР ГРУБОЙ ОЧИСТКИ ТОПЛИВА

На двигатели ЯМЗ-238БЕ,Б, ЯМЗ-238ДЕ,Д устанавливается фильтр грубой очистки топлива со сменным фильтрующим элементом (рис. 31), на двигатели ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2 - фильтр-отстойник (рис. 32).

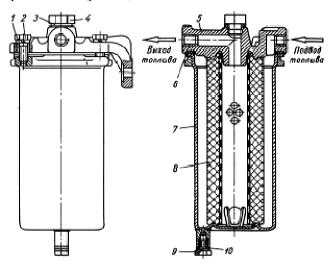


Рис. 31. Фильтр грубой очистки топлива:

1 – пружинная шайба; 2 – болт; 3 – прокладка пробки; 4 – пробка; 5 – крышка; 6 – прокладка колпака; 7 – колпак; 8 – фильтрующий элемент; 9 – сливная пробка; 10 – прокладка сливной пробки

Фильтр грубой очистки топлива (рис. 31) состоит из крышки 5, колпака 7 и фильтрующего элемента 8. Колпак и крышка соединяются четырьмя болтами 2. Уплотнение между ними обеспечивается резиновой прокладкой 6. На колпаке имеется сливная пробка 9 с прокладкой 10. Фильтрующим элементом является ворсистый хлопковый шнур, навитый на сетчатый каркас. Фильтрующий элемент плотно зажимается по торцам между крышкой и дном колпака. Отверстие в крышке, закрытое пробкой 4 с прокладкой 3, служит для заполнения фильтра топливом.

Фильтр грубой очистки топлива (рис. 32) предназначен для грубой очистки топлива от механических примесей и воды с использованием метода организованного отстаивания.

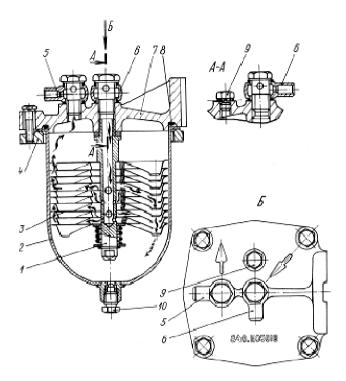


Рис. 32. Фильтр грубой очистки топлива:

1 – ось; 2 – колпак; 3 – фильтрующие элементы; 4 – фланец; 5 – наконечник отвода очищенного топлива; 6 – наконечник подвода топлива; 7 – крышка фильтра; 8 – прокладка; 9 – пробка выпуска воздуха; 10 – сливная пробка

Фильтр грубой очистки топлива состоит из крышки 7, колпака 2 и фильтрующих элементов 3. Колпак и крышка соединяются четырьмя болтами через фланец 4. Уплотнение между ними обеспечивается резиновой прокладкой 8. На колпаке имеется сливная пробка 10.

Топливо в фильтр поступает через наконечник 6 и полость в оси 1. Очистка топлива осуществляется в отстойных ячейках фильтрующих элементов 3, частицы механических примесей и капли воды по наклонным стенкам ячеек дисков перетекают в сборную полость колпака 2.

В процессе эксплуатации предусматривается периодический слив отстоя, промывка колпака и фильтрующих элементов.

ФИЛЬТР ТОНКОЙ ОЧИСТКИ ТОПЛИВА

На двигатели устанавливается фильтр тонкой очистки топлива 7511.1117010 со сменным фильтром для топлива.

Фильтр тонкой очистки топлива (рис. 33) состоит из корпуса 2 с ввернутым к нему штуцером 1 и сменного фильтра для топлива 8. Сменный фильтр выполнен в виде неразборного патрона с металлическим корпусом. Установка сменного фильтра на корпус осуществляется наворачиванием его до упора на центральный резьбовой штуцер 1. Уплотнение между корпусом и сменным фильтром обеспечивается уплотнительным кольцом 7 сменного фильтра.

В корпус 2 ввернут клапан жиклер 3. Через клапан жиклер сливается часть топлива вместе с воздухом, попавшим в систему низкого давления. Клапан жиклер отрегулирован на давление начала открытия 20...40 кПа (0,2...0,4 кгс/см²). При малом давлении в системе, что может наблюдаться при пуске двигателя, клапан перекрывает канал и слива топлива не происходит, питание ЭФУ топливом улучшается.

Штуцер 1 и клапан жиклер 3 в корпус фильтра тонкой очистки топлива устанавливаются на герметик УГ-9 или Унификс К1 с моментом затяжки 58,8...78,4 (6...8) Н·м (кгс·м).

В процессе эксплуатации предусматривается замена сменного фильтра для топлива при ТО-2 через каждые 1000 часов работы двигателя (см. раздел «Техническое обслуживание»).

При потере мощности двигателя сменный фильтр для топлива необходимо заменить, не дожидаясь проведения очередного технического обслуживания.

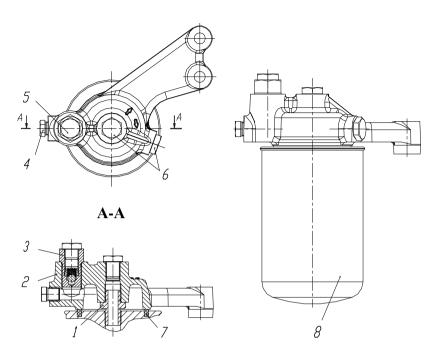


Рис. 33. Фильтр тонкой очистки топлива со сменным фильтром

– штуцер; 2 – корпус фильтра тонкой очистки топлива; 3 – клапан жиклер; 4 – пробка К 1/4"; 5, 6 – пробки M14x1,5-6g; 7 – кольцо уплотнительное; 8 – сменный фильтр для топлива

ТОПЛИВОПРОВОДЫ

Для подвода топлива к насосу и форсункам и отвода его излишков на двигателе имеется система топливопроводов низкого и высокого давления.

Топливопроводы низкого давления присоединяются пустотельми болтами или накидными гайками через наконечники, закрепленные на концах топливопроводов. Контактные поверхности уплотняются медными шайбами толщиной 1,5 мм.

Двигатели ЯМЗ могут комплектоваться полиамидными топливопроводами низкого давления. Контактные поверхности уплотняются алюминиевыми шайбами толщиной 1,5 мм. Моменты затяжки пустотелых латунных болтов приводятся ниже:

Резьбовое соединение	Момент затяжки, Н-м (кгс-м)
Болты крепления полиамидных	
топливопроводов низкого давления:	
M10	8 – 11 (0,8 – 1,1)
M14	18 - 23 (1,8 - 2,3)

ВНИМАНИЕ! УПЛОТНИТЕЛЬНЫЕ ШАЙБЫ ПОВТОРНО ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ

Топливопроводы высокого давления (рис. 34) имеют одинаковую длину для всех цилиндров двигателя. Концы топливопроводов высажены в форме конуса и прижаты накидными гайками к штуцерам топливного насоса высокого давления и форсунок. Во избежание поломок топливопроводов от вибрации они должны быть закреплены при помощи специальных скоб. Для уплотнения в общих головках на топливопроводы высокого давления надеты фланцы. Порядок работы секций ТНВД приводится в разделе «Техническая характеристика».

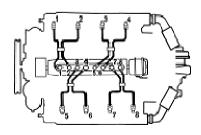


Рис. 34. Схема соединения топливопроводами высокого давления секций ТНВД и форсунок цилиндров двигателя

НАДДУВ

Двигатель оборудован турбокомпрессором, использующим энергию выхлопных газов для наддува двигателя. Увеличивая массу воздуха, поступающего в цилиндры, турбокомпрессор способствует более эффективному сгоранию увеличенной дозы топлива, за счет чего повышается мощность двигателя при умеренной тепловой напряженности.

УСТРОЙСТВО ТУРБОКОМПРЕССОРА

Турбокомпрессор (рис. 35) состоит из одноступенчатого центробежного компрессора и радиальной центростремительной турбины.

Колесо турбины 14 и колесо компрессора 23 расположены на противоположных концах вала ротора консольно по отношению к втулке подшипника 17.

Рабочее колесо 23 центробежного компрессора — полуоткрытого типа, с загнутыми против вращения лопатками, отлито из алюминиевого сплава. Оно напрессовано на вал и закреплено гайкой 1, установленной с герметиком.

Рабочее колесо турбины 14 — полуоткрытого типа, с радиальными лопатками, изготовлено методом литья из жаропрочного сплава. Оно соединено с валом методом сварки трением.

Корпус турбины изготовлен из жаропрочного чугуна. Газ подводится к колесу турбины двумя суживающимися каналами. На торце корпуса турбины имеются шпильки для крепления выпускного трубопровода.

Корпус компрессора 4, вставка и крышка корпуса подшипника 6 изготовлена из алюминиевого сплава. Крышка корпуса подшипника 6 крепится к корпусу подшипника болтами 3 с применением герметика.

В турбокомпрессоре применен подшипник скольжения 17 в виде втулки, изготовленной из алюминиевого сплава. Она установлена в расточке чугунного корпуса подшипника 12 и удерживается от осевых перемещений болтом-стопором 10. Смазывание втулки турбокомпрессора осуществляется под лавлением из системы смазки двигателя.

Тщательно отбалансированный ротор установлен во втулке 17. Осевые усилия, действующие на ротор, воспринимаются упорным подшипником 2. На каждом конце вала ротора установлены разрезные уплотнительные кольца 16, изготовленные из специального чугуна.

Турбокомпрессор крепится к выпускным коллекторам корпусом турбины. Выходной патрубок корпуса компрессора соединен через патрубки и охладитель наддувочного воздуха со впускными коллекторами двигателя.

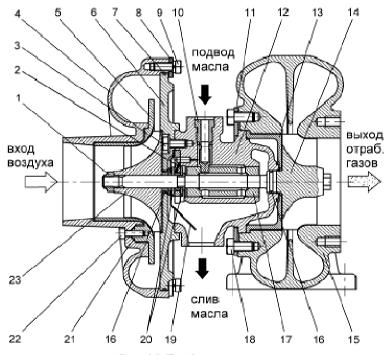


Рис. 35. Турбокомпрессор:

1 — гайка крепления колеса компрессора; 2 — подшипник упорный; 3 — болт; 4 — корпус компрессора; 5 — вставка; 6 — крышка корпуса компрессора; 7 — кольцо уплотнительное; 8 — пластина компрессора; 9 — болт; 10 — болт-стопор; 11 — пластина турбины; 12 — корпус подшипника; 13 — проставка корпуса турбины; 14 — колесо турбины с валом; 15 — корпус турбины; 16 — кольца уплотнительные; 17 — втулка; 18 — болт; 19 — экран маслосбрасывающий; 20 — шайбы упорные; 21 — кольцо уплотнительное; 22 — винт; 23 — колесо компрессора

СИСТЕМА ОХЛАЖДЕНИЯ

Система охлаждения двигателя (рис. 36) — жидкостная, циркуляционная, включающая в себя водяной насос, жидкостно-масляный теплообменник, вентилятор, термостаты. Кроме того, система охлаждения включает водяной радиатор, охладитель наддувочного воздуха типа "воздух-воздух" и дистанционный термометр, устанавливаемые на автомобиле.

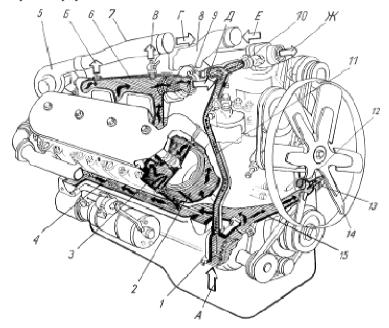


Рис. 36. Схема системы охлаждения:

1 — водяной насос; 2 — полость блока охлаждения гильз; 3 — водяная полость в головке блока; 4 — продольный водяной канал; 5 — турбокомпрессор; 6 — правая водяная труба; 7 — труба соединительная; 8 — патрубок впускной; 9 — термостат; 10 — тройник с соединительными трубками; 11 — трубка перепускная; 12 —заглушка; 13 — впускной патрубок жидкостно-масляного теплообменника; 14 — вентилятор; 15 — поперечный водяной канал; A — подвод охлаждающей жидкости от водяного радиатора; E — к отопителю кабины; E — выпуск воздуха; E — подача наддувочного воздуха к охладителю типа "воздух-воздух"; E — к радиатору; E — от охладителя наддувочного воздуха типа "воздух-воздух" в цилиндры

Во время работы двигателя циркуляция охлаждающей жидкости в системе охлаждения создается центробежным насосом. Из водяного насоса 1 жидкость поступает в поперечный канал 15 и далее по правому продольному каналу 4 в водяную полость правого ряда цилиндров, а в левый ряд цилиндров – через впускной патрубок жидкостно-масляного теплообменника 13, охлаждая масло в двух элементах, далее в левый продольный канал. Для того чтобы охлаждающая жидкость проходила через жидкостно-масляный теплообменник, в переднюю крышку шестерен распределения запрессована заглушка 12.

Далее охлаждающая жидкость из водяных полостей цилиндров по направляющим каналам поступает в головки цилиндров к наиболее нагретым поверхностям — выпускным каналам и стаканам форсунок и затем собирается в водосборных трубах 6.

При нагреве холодного двигателя каналы, соединяющие водосборные трубы с радиатором, перекрыты термостатов 9. Охлаждающая жидкость циркулирует по тройнику с соединительными трубками 10 и перепускной трубке 11 к водяному насосу, минуя радиатор, что ускоряет прогрев двигателя. По достижении охлаждающей жидкостью температуры 80°С клапаны термостатов открываются, нагретая жидкость поступает в водяной радиатор, где отдает тепло потоку воздуха, создаваемому вентилятором 14, после чего снова идет к водяному насосу. Когда температура охлаждающей жидкости понижается, термостаты автоматически направляют весь ее поток непосредственно к водяному насосу, минуя радиатор. Таким образом, посредством термостатов обеспечивается оптимальный тепловой режим работы двигателя.

водяной насос

Водяной насос центробежного типа, установлен на передней стенке блока цилиндров и приводится во вращение клиновым ремнем от шкива, установленного на переднем конце коленчатого вала.

Конструкция водяного насоса приведена на рисунке 37. В чугунном корпусе 7 насоса вращается напрессованная на валик 4 крыльчатка 10, создающая поток охлаждающей жидкости. Валик насоса установлен на двух шарикоподшипниках 3 с односторонним уплотнением. Полость подшипников при сборке

насоса заполняется смазкой Литол-24 ГОСТ 21150-87 на весь срок службы насоса без дополнительной смазки. Уплотнение подшипниковой полости насоса осуществляется торцевым самоподжимным уплотнением. Для контроля за герметичностью торцевого уплотнения в корпусе насоса имеется дренажное отверстие «Б». Шкив привода 1 напрессован на валик насоса.

Водяной насос имеет маркировку на корпусе 236-1307010-Б1.

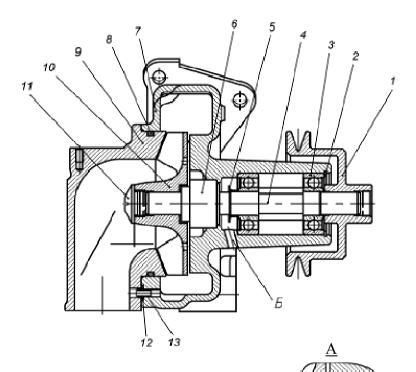


Рис. 37. Водяной насос:

1 — шкив привода; 2 — стопорное кольцо; 3 — подшипники; 4 — валик; 5 — водосбрасыватель; 6 — уплотнение торцевое; 7 — корпус насоса; 8 — кольцо уплотнительное; 9 — патрубок водяного насоса; 10 — крыльчатка; 11 — заглушка крыльчатки; 12 — кольцо уплотнительное; 13 — втулка уплотнительного кольца; А — торцевое уплотнение; Б — дренажное отверстие

ПРИВОД ВЕНТИЛЯТОРА

Двигатели комплектуются фрикционным приводом вентилятора, предназначенным для включения и выключения вентилятора в зависимости от условий эксплуатации.

Применение фрикционного привода позволяет:

- Обеспечить оптимальный тепловой режим двигателя.
- Снизить расход топлива за счет снижения потерь мощности на работу вентилятора.
- Повысить надежность шестеренчатого привода двигателя за счет снижения динамических нагрузок на шестерни.
- Обеспечить бродоходимость автомобиля без снятия вентилятора.
- Сократить время прогрева двигателя.
- Улучшить комфортабельность за счет поддержания надлежащего микроклимата в кабине и снижения шумности.

УСТРОЙСТВО И РАБОТА ПРИВОДА ВЕНТИЛЯТОРА

Системы привода вентилятора могут быть выполнены с включателем механического типа (в запасные части для двигателей выпуска до 2003 г.) или с электромагнитным управлением (двигатели выпуска с 2003 г.) и поэтому имеют ряд конструктивных отличий.

УСТРОЙСТВО И РАБОТА ПРИВОДА ВЕНТИЛЯТОРА С ВКЛЮЧАТЕЛЕМ МЕХАНИЧЕСКОГО ТИПА

Фрикционный привод может работать в трех режимах: автоматическом, постоянно включенным и постоянно выключенном. Управление вентилятора осуществляется с помощью выключателя.

Вентилятор при неработающем двигателе находится в отключенном состоянии. После пуска двигателя крыльчатка вентилятора может вращаться за счет трения в подшипниках и других сопрягаемых деталях дисковой муфты с частотой $200 \div 500$ об/мин.

При достижении температурного состояния двигателя близкого к высшему оптимальному (+85°...+93°С) масло от

включателя под давлением поступает в штуцер 13 (рис. 38) корпуса 14. Далее через отверстие в корпусе, радиальные отверстия во втулках 10 и 22 попадает в осевое отверстие ведущего вала 18, а оттуда к поршню 30. Поршень начинает перемещаться, передавая усилия через пружины 32 на обойму, которая давит на диски 4 и 5, выбирая зазоры между ними. После сжатия ведущих и ведомых дисков ведомый вал 25 с крыльчаткой начинает вращаться с рабочей частотой.

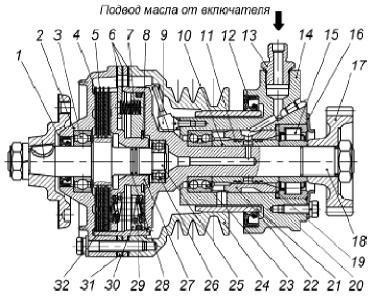


Рис. 38. Привод вентилятора

1 — манжета; 2 — крышка; 3 — подшипник; 4 — диск ведомый; 5 — диск ведущий; 6 — прокладка; 7 — пружина отжимная; 8 — кольцо упорное; 9 — трубка черпательная; 10 — втулка распорная; 11 — кольцо уплотнительное; 12 — манжета; 13 — штуцер; 14 — корпус; 15 — подшипник; 16 — фланец упорный; 17 — шестерня; 18 — вал ведущий; 19 — шайба; 20 — прокладка; 21 — втулка; 22 — втулка распорная; 23 — подшипник; 24 — шкив; 25 — вал ведомый; 26 — подшипник; 27 — обойма нажимная; 28 — кольцо уплотнительное; 29 — кольцо уплотнительное; 30 — поршень; 31 — упор поршня; 32 — пружина нажимная

После того как, температурное состояние двигателя достигнет значения близкого к низшему оптимальному, включатель

прекращает подачу масла. Масло, находящееся под поршнем 30, под действием центробежных сил, а также пружин 7, 32 через дренажные отверстия по специальным каналам перемещается во внутреннюю полость передней крышки 2 и шкива 24. С помощью черпательной трубки 9 и далее по каналам в корпусе масло попадает в картер двигателя.

По мере освобождения полости под поршнем 30 от масла он перемещается под действием пружин 7 и 32. Диски фрикционного привода расходятся и вентилятор отключается.

ВКЛЮЧАТЕЛЬ МЕХАНИЧЕСКОГО ТИПА

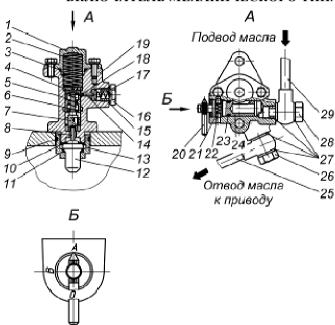


Рис. 39. Включатель:

1 - крышка корпуса; 2 - пружина возвратная; 3 - кольцо уплотнительное; 4 - шайба; 5 - золотник; 6 - пружина золотника; 7 - толкатель; 8-поршень датчика; 9 - кольцо уплотнительное; 10 - шайба регулировочная; 11 - кольцо уплотнительное; 12 - датчик; 13 - гайка; 14 - шток фиксатора; 15 - шайба; 16 - пробка; 17 - пружина фиксатора; 18 - шарик; 19 - корпус; 20 - рычаг крана; 21 - пружина; 22 - шарик; 23 - кольцо; 24 - пробка крана; 25 - трубка отводящая; 26 - трубка подводящая

Включатель механического типа (рис. 39) совмещен с термодатчиком и ручным переключателем режимов и устанавливается на водяную трубу двигателя. Включатель служит для управления муфтой фрикционного привода. Режим его работы устанавливается с помощью ручного переключателя 20, имеющего три положения:

положение "A" - автоматическое; положение "B" - постоянно включено; положение "O" - постоянно выключено.

Масло из центрального масляного канала блока по подводящей трубке 29 поступает во включатель.

При положении рычага "В" масло беспрепятственно проходит через выключатель и по отводящей трубке 25 поступает в привод, включая его.

При положении рычага "О" масло в привод не поступает. Привод отключен.

При положении рычага "А" включение и выключение фрикционного привода происходит автоматически в зависимости от температуры охлаждающей жидкости двигателя. температуре охлаждающей жидкости свыше плюс 70°C поршень 8 датчика 12 выталкивается из корпуса в результате объемного расширения наполнителя датчика. Поршень 8, упираясь в толкатель 7, поднимает его, одновременно сжимая пружину 6 золотника 5. Золотник выключателя 5 остается неподвижным, т.к. удерживается шариком 18 фиксатора 14. При температуре охлаждающей жидкости около плюс 85°C толкатель 7 касается золотника 5, шарик 18 выходит из фиксирующей канавки, золотник 5 резко передвигается в сторону движения толкателя 7. Шарик 18 попадает в другую фиксирующую канавку, золотник 5 останавливается и занимает положение, при котором полость, в которую подводится масло, соединяется с полостью, отводящей масло. По трубке масло поступает к фрикционному приводу вентилятора.

По мере снижения температуры охлаждающей жидкости поршень датчика 8 начинает двигаться в датчик 12 под действием пружины 6. При температуре охлаждающей жидкости плюс 70°С происходит обратное перемещение золотника 5, который перекрывает подводящую и отводящую полости, прекращая доступ масла к приводу. Привод при этом отключается.

ВНИМАНИЕ! ПРИ ПОДГОТОВКЕ К ПРЕОДОЛЕНИЮ БРОДА НЕОБХОДИМО ВКЛЮЧАТЕЛЬ ПРИВОДА ВЕНТИЛЯТОРА УСТАНОВИТЬ В ПОЛОЖЕНИЕ "О" (ПОСТОЯННО ВЫКЛЮЧЕНО). В ОСТАЛЬНОМ НЕОБХОДИМО РУКОВОДСТВОВАТЬСЯ РАЗДЕЛОМ "ПРЕОДОЛЕНИЕ БРОДА" РУКОВОДСТВА ПО ЭКСПЛУАТАЦИИ АВТОМОБИЛЯ

УСТРОЙСТВО И РАБОТА ПРИВОДА ВЕНТИЛЯТОРА С ЭЛЕКТРОМАГНИТНЫМ ВКЛЮЧАТЕЛЕМ

Устройство и принцип работы фрикционной муфты привода вентилятора (рис. 40) аналогичны предыдущему, но конструктивное исполнение ряда деталей имеет особенности.

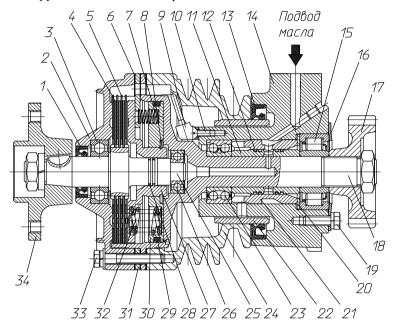


Рис. 40. Привод вентилятора

1 — манжета; 2 — крышка; 3 — подшипник; 4 — диск ведомый; 5 — диск ведущий; 6 — прокладка; 7 — пружина отжимная; 8 — кольцо упорное; 9 — трубка черпательная; 10 — винт; 11 — втулка распорная; 12 — кольцо уплотнительное; 13 — манжета; 14 — корпус; 15 — подшипник; 16 — фланец упорный; 17 — шестерня; 18 — вал ведущий; 19 — болт; 20 — шайба; 21 — втулка; 22 — втулка распорная; 23 — подшипник; 24 — шкив; 25 — вал ведомый; 26 — подшипник; 27 — обойма нажимная; 28 — кольцо уплотнительное; 30 — поршень; 31 — упор поршня; 32 — пружина нажимная, 33 — болт; 34 — ступица вентилятора.

ВКЛЮЧАТЕЛЬ ЭЛЕКТРОМАГНИТНЫЙ

Особенности работы электромагнитного включателя (рис. 41–44) заключаются В TOM. что термореле, ОТ установленного на правом водяном коллекторе, поступает электрический сигнал через реле к электромагнитному клапану, который управляет поступлением масла в муфту привода. Переключатель режимов работы привода в этом случае находится в кабине и управляет работой электромагнитного клапана также электрическим сигналом.

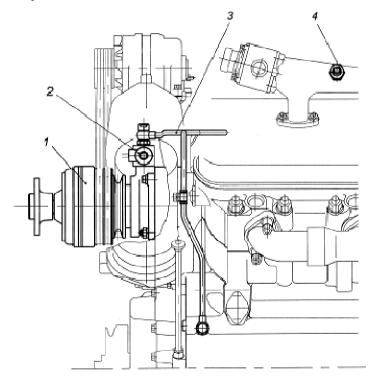


Рис. 41. Расположение деталей привода вентилятора с электромагнитным клапаном на двигателе:

1 — муфта привода; 2 — электромагнитный клапан; 3 — трубка подвода масла; 4 — термореле

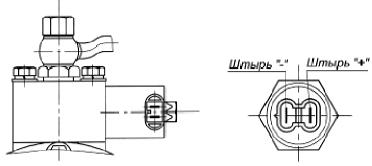


Рис. 42. Клапан электромагнитный КЭМ 32-20

Рис. 43. Термореле

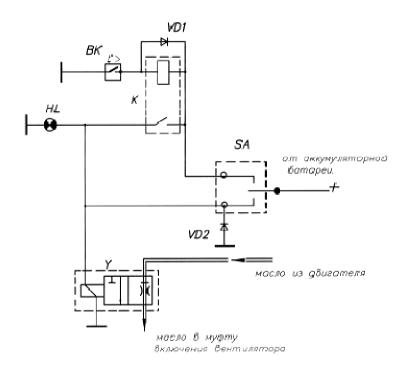


Рис. 44. Схема включения муфты вентилятора электрическая, принципиальная

Схема включения муфты вентилятора электрическая, принципиальная (рис. 44) включает следующие элементы:

Обозначение элемента	Наименование	Кол-во
ВК	Термореле 661.3710-01	1
Y	Электромагнитный клапан КЭМ 32-20*	1
HL	Контрольная лампа	1
SA	Переключатель 51.3709**	1
VD1, VD2	Диод Д247А**	2
K	Реле 11.3747**	1

- * Привод вентилятора комплектуется электромагнитным клапаном КЭМ 32-20 при напряжении бортовой сети 24 В.
- ** Схема электрическая принципиальная, поэтому она может видоизменяться, в том числе могут быть применены другие комплектующие, которые выбираются предприятиями потребителями силовых агрегатов.

Функции элементов схемы электрической принципиальной:

- 1. Переключатель SA находится в кабине.
- 2. Переключатель SA имеет три положения:
 - «Выключено» вентилятор выключен независимо от температуры двигателя.
 - «Включено» вентилятор включен независимо от температуры двигателя.
 - «Автомат» вентилятор включается от термореле в зависимости от температуры двигателя.
- 3. HL лампа контрольная включается при работе вентилятора.

ЖИДКОСТНО-МАСЛЯНЫЙ ТЕПЛООБМЕННИК

Жидкостно-масляный теплообменник (ЖМТ) предназначен для поддержания оптимального уровня температуры масла системы смазки двигателя и крепится к блоку цилиндров с левой стороны двигателя. Двигатели комплектуются ЖМТ пластинчатого типа с двумя теплопередающими элементами.

Конструкция ЖМТ с двумя теплопередающими элементами показана на рисунке 45.

Теплопередающие элементы 12 пластинчатого типа крепятся к корпусу 3 с уплотнением резиновыми кольцами 2 и

закрываются крышками 11 с уплотнением паронитовыми прокладками 10. Охлаждаемое масло проходит внутри секций теплопередающих элементов, а охлаждающая жидкость снаружи противотоком. В масляной полости корпуса установлен перепускной клапан 1, при открытии которого масло проходит в магистраль минуя теплообменник. Начало открытия клапана при перепаде давления 274±40 кПа (2,8±0,40 кгс/см²). Регулировка клапана обеспечивается установкой необходимого количества деталей 4 и 5.

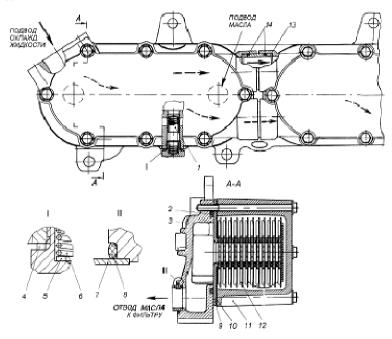


Рис. 45. Жидкостно-масляный теплообменник:

1 — клапан перепускной; 2 — уплотнение; 3 — корпус; 4 — шайба регулировочная; 5 — прокладка регулировочная; 6 — пружина; 7 — втулка; 8 — уплотнительное кольцо; 9 — фланец; 10 — прокладка; 11 — крышка элемента; 12 — секции элемента пластинчатого; 13 — муфта соединительная; 14 — уплотнительные кольца

На отводящем патрубке теплообменника установлен кран (рис. 46) или пробка (рис. 46а) для слива охлаждающей жидкости.

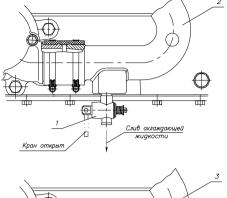


Рис. 46. Кран слива охлаждающей жидкости: 1 – кран; 2 – патрубок отволящий

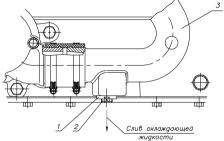


Рис. 46а. Пробка слива охлаждающей жидкости: 1 – ввертыш; 2 – пробка сливная; 3 – патрубок отводящий

ЭЛЕКТРООБОРУДОВАНИЕ

Электрооборудование работает в однопроводной системе постоянного тока с номинальным напряжением 24В. Отрицательный полюс источника тока соединяется с корпусом.

ГЕНЕРАТОРЫ

На силовой агрегат, в зависимости от модели и комплектации могут устанавливаться генераторы нескольких моделей (см. раздел «Комплектация»).

ГЕНЕРАТОР МОДЕЛИ 1322.3771

Генераторная установка 1322.3771 состоит из трехфазного генератора переменного тока, встроенных конденсатора емкостью 2,2 мкФ и интегрального регулятора напряжения Я120М12И, предназначенные для работы в качестве источника электрической энергии параллельно с аккумуляторной батареей в системе электрооборудования.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА 1322.3771

28

поминальное напряжение, в	20
Максимальный ток нагрузки генератора, А	45
Начальная частота вращения ротора при температуре окружающей среды и генератора 25±10°С и напряжении 26 В, об/мин, не более:	
при токе нагрузки 10 А	1450
при токе нагрузки 20 А	1750
при токе нагрузки 28 А	2050

Номинальное напряжение В

Регулируемое напряжение пои температуре окружающей среды 25±10°C, частоте вращения ротора 5000 мин⁻¹ и токе нагрузки 16 A с подключенной аккумуляторной батареей должно быть 28,4±0,6 В.

На генераторе имеются следующие выводы:

- ** + ** для соединения с аккумуляторной батареей (АКБ) и нагрузкой;
- « +Д » для подключения лампочки контроля зарядки АКБ и для соединения со счетчиком моточасов;
- « Ш » для соединения с включателем стартера и приборов (замок зажигания);
 - « W » вывод фазы для соединения с тахометром.
- В крышке со стороны контактных колец установлены: выпрямительный блок; пластмассовый щеткодержатель с регулятором напряжения, закрепленный на крышке двумя винтами; помехоподавляющий конденсатор, установленный сверху на крышке.

Интегральный регулятор напряжения Я120М12И – изделие неразборное и неремонтоспособное.

ГЕНЕРАТОР МОДЕЛИ Г273В2

Генераторная установка Г273В2 состоит из трехфазного синхронного генератора переменного тока с электромагнитным возбуждением, встроенных выпрямительного блока БПВ 46-65-02 и интегрального регулятора напряжения Я120М1.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА Г273В2

Номинальное напряжение, В	28
Выпрямленный ток, А, не менее	45
Частота вращения ротора при температуре окружающей среды и генератора 25±10°C и напряжении 26 В, мин ⁻¹ , не более:	
при токе нагрузки 10 А, не более	1670
при токе нагрузки 20 А, не более	2250
Ток возбуждения, А	$3,9\pm0,2$

Напряжение генератора (напряжение настройки интегрального устройства) в положении посезонной регулировки «лето» при токе нагрузки 10±0,5 A, частоте вращения ротора генератора 3500±105 мин⁻¹, температуре окружающей среды 25±10°С и включенной аккумуляторной батарее должно находиться в пределах 27...28 B, а при положении посезонной регулировки «зима» должно быть на 1,5...3 В выше.

Давление на щетки при сжатии пружин	2,16±0,30
до 17,5 мм, Н (кгс)	$(0,216\pm0,03)$
Масса генератора без шкива, кг, не более	5,2

Генераторная установка Г273В2 имеет устройство посезонной регулировки напряжения, которая осуществляется винтом, находящимся на кожухе щеткодержателя. При вывернутом винте обеспечивается летняя регулировка, при ввернутом до упора винте – зимняя регулировка.

Интегральный регулятор напряжения Я120М1 – изделие неразборное и неремонтоспособное.

ГЕНЕРАТОР МОДЕЛИ 1702.3771

Генераторная установка 1702.3771 состоит из трехфазного генератора переменного тока, встроенных конденсатора емкостью 2,2 мкФ и регулятора напряжения 2712.3702 предназначенные для работы в качестве источника электрической энергии параллельно с аккумуляторной батареей в системе электрооборудования.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА 1702.3771

Номинальное напряжение, В	28
Максимальный ток нагрузки генератора, А	50
Частота вращения ротора при температуре окружающей среды и генератора 25±10°С и напряжении 28 В, об/мин, не более:	
без нагрузки	1100
при токе нагрузки 30 А	1900

На генераторе имеются следующие выводы:

- « + » для соединения с аккумуляторной батареей и нагрузкой;
 - « » для соединения с регулятором напряжения;
 - « +Д » для соединения со счетчиком моточасов;
- « Ш » для соединения с регулятором напряжения и пусковой кнопкой (два вывода);
 - « W » вывод фазы для соединения с тахометром.

УСТРОЙСТВО ГЕНЕРАТОРА

Генератор представляет собой трехфазную двенадцатиполюсную синхронную электрическую машину со встроенным выпрямительным блоком, помехоподавляющим конденсатором и щеткодержателем с протяжной вентиляцией.

Генератор состоит из следующих частей: статора; ротора; крышки со стороны контактных колец со встроенным выпрямительным блоком и конденсатором; щеточного узла, устанавливаемого на крышке со стороны контактных колец; крышки со стороны привода; вентилятора и шкива.

Статор набран из отдельных пластин, соединенных в пакет и имеет 36 пазов, в которые заложена трехфазная обмотка.

Ротор состоит из катушки возбуждения, намотанной на каркасе, с установленной внутри втулкой, к торцам которой примыкают два полюсных наконечника, образующих двенадцатиполюсную магнитную систему, к которым припаяны концы обмотки возбуждения.

Втулка с катушкой возбуждения, полюсные наконечники, контактные кольца и подшипник напрессованы на вал.

Крышка со стороны контактных колец изготовлена из алюминиевого сплава, имеет вентиляционные окна и лапу для крепления генератора на двигателе.

Крышка со стороны привода изготовлена из алюминиевого сплава, имеет вентиляционные окна и две лапы для крепления генератора на двигателе. В крышке установлен подшипник.

Вентилятор и шкив установлен на вал генератора на шпонке и закреплен гайкой с шайбой.

ГЕНЕРАТОР МОДЕЛИ 6582.3701-03

Генераторная установка 6582.3701-03 состоит из трехфазного синхронного генератора переменного тока с электромагнитным возбуждением, встроенных выпрямительного блока БПВ-17-100-02 и интегрального регулятора напряжения типа Я120М1, предназначенные для работы в качестве источника электрической энергии параллельно с аккумуляторной батареей в системе электрооборудования.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА 6582,3701-03

Номинальное напряжение, В	28
Максимальный ток нагрузки генератора, А	80
Частота вращения ротора при температуре окружающей среды и генератора 25±10°C и напряжении 26 В, об/мин, не более:	
без нагрузки	1180
при токе нагрузки 60 А	2200
Ток возбуждения, А	3,2±0,2
Давление на щетки при сжатии пружины до 17,5 мм, Н	2,2±0,2

При токе нагрузки 30 A, частоте вращения ротора генератора 3500±175 об/мин, температуре окружающей среды 25±10°С и включенной аккумуляторной батарее напряжение генератора должно находиться в пределах 27,0...28,0 В в положении посезонной регулировки «лето», а при положении посезонной регулировки «зима» должно быть 28,8...30,2 В.

УСТРОЙСТВО ГЕНЕРАТОРА

Генератор состоит из следующих частей: статора; ротора; крышки со стороны контактных колец со встроенным выпрямительным блоком, имеющим три дополнительных диода; крышки со стороны привода; щеткодержателя с интегральным регулятором напряжения; вентилятора и шкива.

Статор набран из отдельных пластин, соединенных в пакет и имеет 36 пазов в которые заложена трехфазная обмотка, соединенная по схеме «двойная звезда». Ротор состоит из напрессованных на вал стальной втулки с катушкой возбуждения и стальных полюсов, прилегающих к втулке и перекрывающих обмотку. стороны контактных колец. Крышка co вентиляционные окна. В крышку вмонтирован выпрямительный блок. Крышка со стороны привода имеет вентиляционные окна. В крышке установлен подшипник. Щеткодержатель состоит из щеткодержателя со щетками и интегрального регулятора напряжения. Вентилятор и шкив установлен на вал генератора на шпонке и закреплен гайкой с шайбой.

Генераторная установка имеет устройство посезонной регулировки напряжения, которая осуществляется винтом, находящимся на кожухе щеткодержателя. При вывернутом винте обеспечивается летняя регулировка, при ввернутом до упора винте – зимняя регулировка.

СТАРТЕРЫ

Двигатели ЯМЗ могут комплектоваться стартерами модели 25.3708-21 ОАО «ЭЛТРА» г. Ржев или модели AZF 4581 производства фирмы "Искра" (Словения).

Конструкция двигателя предусматривает возможность установки обеих моделей стартеров.

CTAPTEP 25.3708-21

Стартер 25.3708-21 (рис. 47) состоит из электродвигателя, механизма привода и электромагнитного тягового реле. Электродвигатель стартера постоянного тока, последовательного возбуждения, с питанием от аккумуляторных батарей. Для обеспечения надежного соединения с «массой» автомобиля на крышке стартера со стороны коллектора имеется болт для присоединения гибкой токопроводящей перемычки.

Питание стартера осуществляется от аккумуляторных батарей $C_{20}-132~A\cdot ч,~C_{20}-182~A\cdot ч,~C_{20}-190~A\cdot ч,~C_{20}-264~A\cdot ч.$

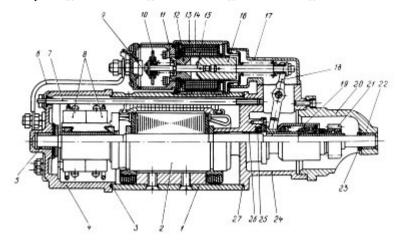


Рис. 47. Стартер:

1 — корпус; 2 — якорь; 3, 37 — уплотнительные кольца; 4 — крышка со стороны коллектора; 5 — передний подшипник; 6 — соединительная шина; 7 — стяжная шпилька; 8 — щетки; 9 — контактные болты; 10 — контактный диск; 11 — корпус реле; 12 — сердечник; 13 — удерживающая обмотка реле; 14 — втягивающая обмотка реле; 15 — шток якоря; 16 — якорь реле; 17 — кожух; 18 — рычаг привода; 19 — привод; 20 — крышка со стороны привода; 21 — шестерня привода; 22 — средний подшипник; 23 — упорная шайба; 24 — корпус привода; 25 — сальник; 26 — задний подшипник

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Номинальное напряжение, В	24
Номинальная мощность, кВт	8,2
Ток холостого хода, А	110
Ток при тормозном моменте 60 Н·м (6 кгс·м), А не более	900
Напряжение включения реле стартера, В	18
Давление щеточных пружин, Н (кгс)	15±1,5 (1,5±0,15)
Масса стартера, кг	29
Пусковая мощность, кВт не менее	5,0
Частота вращения якоря на холостом ходу, об/мин	5000

Стартер модели 25.3708-21 в комплекте с его креплением взаимозаменяем со стартером модели AZF 4581 производства фирмы "Искра" (Словения).

CTAPTEP AZF 4581

Ниже приводится краткая техническая характеристика стартера AZF 4581 производства фирмы "Искра" (Словения).

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Номинальное напряжение, В	24
Номинальная мощность, кВт	6,5
Ток холостого хода, А	110
Напряжение включения реле-стартера, В	16
Масса стартера, кг	10,5
Частота вращения якоря на холостом ходу, об/мин	8000

Все замечания и предложения по работе стартеров модели AZF 4581 производства фирмы "Искра" (Словения) направлять по адресу: 150040, г. Ярославль, проспект Октября 75, Инженерноконструкторский центр.

ЭЛЕКТРОФАКЕЛЬНОЕ УСТРОЙСТВО

Электрофакельное устройство служит для облегчения пуска холодного двигателя при температуре воздуха до минус 22°С. Устройство подключено к топливной системе двигателя и работает на том же топливе, что и двигатель. Действие его основано на испарении топлива в штифтовых свечах накаливания и воспламенении этих паров с воздухом. Возникающий при этом факел подогревает поступающий в цилиндры двигателя воздух.

В состав электрофакельного устройства входят две электрофакельные свечи 3 (рис. 48), установленные в резьбовые отверстия впускных коллекторов 2 двигателя, электромагнитный топливный клапан 6, термореле с добавочным сопротивлением; кнопочный выключатель, электромагнитное реле и контрольная лампа, устанавливаемые в кабине автомобиля.

На некоторые комплектации двигателей электрофакельное устройство не устанавливается.

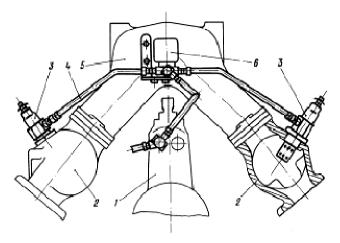


Рис. 48. Схема установки электрофакельного устройства на двигателе:

1 – топливный насос высокого давления; 2 – впускной коллектор; 3 – электрофакельная свеча; 4 – топливопроводы; 5 – переходник впускных коллекторов; 6 – электромагнитный топливный клапан

МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ

Маркирование двигателя осуществляется на заводской табличке.

Пример таблички к двигателю ЯМЗ-238ДЕ2 на рисунке 49. Таблички других двигателей аналогичны по оформлению, но отличаются некоторыми цифрами. Табличка установлена на верхней площадке в передней части блока цилиндров. На ней размещена следующая информация:

- 1. Товарный знак предприятия-изготовителя.
- 2. Знак соответствия национальным стандартам с обозначением организации, выдавшей стандарт.
- 3. Знак официального утверждения.
- 4. Соответствие правилам 24R-03 с коэффициентом поглошения.
- 5. Соответствие правилам 49RA-02 (Евро-1) или 49RB-02 (Евро-2) по выбросу частиц.

- 6. Модель и комплектация двигателя.
- 7. Год выпуска. Обозначается цифрой или буквой, что соответствует: 1-2001 г.; 2-2002 г. и т.д., A-2010 г., B-2011 г.

8. Порядковый номер.

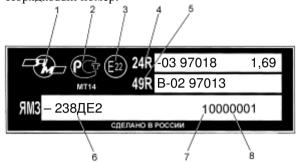


Рис. 49. Заводская табличка двигателя ЯМЗ-238ДЕ2.

Кроме того, год выпуска и номер двигателя продублированы на площадке левого ряда блока цилиндров в задней части двигателя.

Модель топливного насоса высокого давления, его номер и дата выпуска указаны на табличке, закрепленной на корпусе насоса с правой стороны.

Обозначение турбокомпрессора по спецификации и его порядковый номер выбиты на специальной площадке в передней верхней части корпуса компрессора.

На топливном насосе высокого давления в сборе с регулятором частоты вращения устанавливаются пять пломб завола-изготовителя:

- на люк смотровой регулятора;
- на болт регулировки максимальных холостых оборотов двигателя;
- на крышку корректора;
- на винт под ограничение мощности;
- на крышку верхнюю ТНВД.

ВНИМАНИЕ! СНЯТИЕ ПЛОМБ В ГАРАНТИЙНЫЙ ПЕРИОД ЭКСПЛУАТАЦИИ КАТЕГОРИЧЕСКИ **ЗАПРЕЩАЕТСЯ**.

Маркировка коробки передач выполняется на специальной площадке с левой стороны картера. Выбивается модель коробки передач, заводской номер и код года выпуска.

ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ

Надежная работа двигателя гарантируется при использовании только рекомендуемых заводом эксплуатационных материалов.

Для двигателей ЯМЗ могут применяться топлива, смазочные материалы и охлаждающе жидкости как российских производителей, так и соответствующие им продукты производства других стран.

ВНИМАНИЕ! ПРИМЕНЕНИЕ ТОПЛИВА, СМАЗОЧНЫХ МАТЕРИАЛОВ И ОХЛАЖДАЮЩИХ ЖИДКОСТЕЙ, НЕ УКАЗАННЫХ В НАСТОЯЩЕМ РУКОВОДСТВЕ, **ЗАПРЕЩАЕТСЯ**.

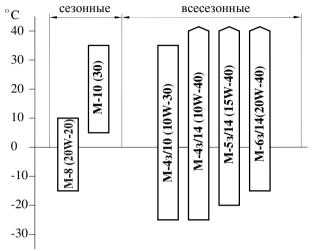
РЕКОМЕНДУЕМЫЕ МАРКИ ТОПЛИВ

Для эксплуатации двигателей применять дизельные топлива:

- 1. Отвечающие требованиям ГОСТ 305-82:
 - марок Л-0,2-40, Л-0,2-62 при температуре окружающего воздуха 0°С и выше;
 - марки 3-0,2 минус 35 при температуре окружающего воздуха выше минус 20°С;
 - марки 3-0,2 минус 45 при температуре окружающего воздуха выше минус 30°С;
 - марки A-0,2 при температуре окружающего воздуха выше минус 50°C.

Экологически чистое дизельное топливо по ТУ 38.1011348-2003:

- марок ДЛЭЧ-В, ДЛЭЧ при температуре окружающего воздуха 0°С и выше;
- марки ДЗЭЧ выше минус 20°С.
- 2. Отвечающие требованиям ГОСТ Р 52368-2005 и стандарта EN-590:2004, вида І...ІІІ (по содержанию серы):
- для районов с умеренным климатом сортов (марок) A, B, C, D, E, F с предельной температурой фильтруемости плюс 5, 0, минус 5, минус 10, минус 15, минус 20°C соответственно;
- для районов с холодным климатом классов 0, 1, 2, 3, 4 с предельной температурой фильтруемости минус 20, минус 26, минус 32, минус 38, минус 44°C соответственно.


В Российской Федерации нормам стандарта EN-590 (ГОСТ Р 52368-2005) отвечают следующие марки дизельного топлива:

Марка	Номер стандарта	Предприятие-изготовитель
H . Y EH 500 (EN 500)	ТУ 0251-018-	ООО "Лукойл-
Лукойл ЕН 590 (EN 590)	00044434-2002	Пермнефтеоргсинтез"
Топливо дизельное	ТУ 38.401-58-	ОАО "Славнефть-
автомобильное (EN 590)	296-2001	Ярославнефтеоргсинтез
Топливо дизельное	ТУ 38.401-58-	ОАО "Московский нефте-
автомобильное (ЕН 590)	296-2005	перерабатывающий завод"

- 3. Для улучшения экологических показателей допускается эксплуатация двигателей Евро-0...Евро-1 на дизельном топливе с антидымными присадками:
- марок ДЛМ и ДЗМ по ТУ 38.401947-92 с добавлением присадки Ангарад-2401 по ТУ 38.401956-93 в количестве 0,3% (масс);
- марок Л и 3 по ГОСТ 305-82 с добавлением присадки фирмы "Лубризол" Lz 8288 в количестве 0,1% (масс);
- марок Л и 3 по ГОСТ 305-82 с добавлением присадки ЭКО-1 по ТУ 38.401881-91 в количестве $0.2\pm0.05\%$ (масс).
- 4. Для двигателей ЯМЗ, эксплуатирующихся за рубежом, допускается применение дизельных топлив по стандарту EN 590:2004 или стандартам других государств, идентичных EN 590:2004.
- 5. Для двигателей ЯМЗ, удовлетворяющих экологическим нормативам Евро-2, временно, до обеспечения потребностей автотранспортных средств на территории РФ топливами, отвечающими требованиям ГОСТ Р 52368-2005 и стандарта EN-590:2004, допускается использование топлив по ГОСТ 305-82 с содержанием серы не более 0,2%.
- 6. При содержании серы в топливе более 0,5% рекомендуется сократить вдвое периодичность смены масла.
- 7. В межсезонный период при отсутствии топлива необходимой марки, в порядке исключения, допускается эксплуатация двигателей на смеси дизельного топлива марок Л и З по ГОСТ 305-82 (топлив Евро по ГОСТ Р 52368-2005) с керосином осветительным по ТУ 38.401-58-10-01 или топливом для реактивных двигателей ТС-1 по ГОСТ 10227, содержание которых в смеси не должно превышать 50% (об.). Каждые 10% осветительного керосина или реактивного топлива понижают температуру застывания на 5°С.
- 8. Для эксплуатации двигателей допускается использование биотоплива, соответствующего стандарту EN-14214 (дизельное топливо, содержащее не более 5% метилового эфира рапсового масла), или стандартам других государств, идентичных EN-14214.

РЕКОМЕНДУЕМЫЕ МАРКИ МАСЕЛ

1. РЕКОМЕНДУЕМЫЕ ДЛЯ ЭКСПЛУАТАЦИИ КЛАССЫ ВЯЗКОСТИ МОТОРНЫХ МАСЕЛ ПО ГОСТ 17479.1-85, В ЗАВИ-СИМОСТИ ОТ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕГО ВОЗДУХА, °С

Примечание:

В скобках приведены классы вязкости масел SAE – SAEj 300.

2. ПЕРЕЧЕНЬ МОТОРНЫХ МАСЕЛ, ДОПУЩЕННЫХ ДЛЯ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЕЙ ЯМЗ

2.1. МАСЛА ДЛЯ ДВИГАТЕЛЕЙ С ТУРБОНАДДУВОМ, УДОВ-ЛЕТВОРЯЮЩИХ ЭКОЛОГИЧЕСКИМ НОРМАТИВАМ ЕВРО-0 И ЕВРО-1 (ГРУППА МАСЕЛ ЯМЗ-2-97+ЯМЗ-3-02 ПО РД 37.319.034-06)

Марка масла	Номер стандарта	Предприятие-изготовитель
M-10-Д ₂ (м), M-8-Д ₂ (м)	ГОСТ 8581-78	ООО "ЛУКойл- Пермнефтеоргсинтез" ОАО "Завод им. Шаумяна" ОАО "Славнефть - Ярославнефтеоргсинтез" АО "Азмол" г. Бердянск ОАО "Ангарская нефтехи- мическая компания" ОАО "Рязанский нефтепе- рерабатывающий завод" ООО "ЛУКойл — Волго- граднефтепереработка"

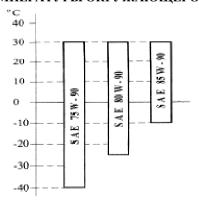
Марка масла	Номер стандарта	Предприятие-изготовитель
Consol M-10- $\Pi_2(M)$ Consol M-8- $\Pi_2(M)$	ГОСТ 8581-78	ООО "ВИАЛ ОЙЛ", г. Москва
Омскойл-Турбо 2 (М-10-Д ₂ (м))	ТУ 38.301-19- 110-97	ОАО "Омский НПЗ"
СамОйл-4126 <u>М-10-Д₂ (м)</u> СамОйл-4127 М-63/14-Д(м)	TY 38.301-13- 008-97	ОАО "Новокуйбышевский НПЗ"
ЛУКОЙЛ-Супер (SAE 15W-40, API CD/SF) M-53/14-Д(м)	CTO 00044434- 001-2005	ООО "ЛУКойл – Волго- граднефтепереработка"
ЛУКОЙЛ-Супер (SAE 15W-40, API CF- 4/SG) M-53/14-Д(м)	CTO 00044434- 001-2005	ООО "НОРСИ", г. Кстово
М-43/14-Д	ТУ 0253-006- 08151164	ЗАО «НК «Селект», г. Фрязино, Московской обл.
THK Revolux D1 (SAE 10W-40, 15W-40 API CF-4/CF/SJ)	ТУ 0253-001- 44918199-2005	ООО «ТНК - смазочные материалы»

Примечание:

- 1. Для двигателей ЯМЗ с турбонаддувом, удовлетворяющих экологическим нормативам Евро-0 и Евро-1, допускается использование масел групп ЯМЗ-4-02 (п. 2.2).
- 2. Для двигателей ЯМЗ с турбонаддувом, работающих за рубежом, допускается применение импортных моторных масел с уровнем эксплуатационных свойств по API не ниже группы CF-4, классов вязкости, указанных в пункте 1.

2.2. МАСЛА ДЛЯ ДВИГАТЕЛЕЙ С ТУРБОНАДДУВОМ, УДОВ-ЛЕТВОРЯЮЩИХ ЭКОЛОГИЧЕСКИМ НОРМАТИВАМ ЕВРО-2 (ГРУППА МАСЕЛ ЯМЗ-4-02 ПО РД 37.319.034-06)

Марка масла	Номер стандарта	Предприятие-изготовитель
Ютек Супердизель (SAE 10W-40, 15W-40, API CF-4/SG) M-43/14-E, M-53/14-E	TY 0253-312- 05742746-2003	ОАО "Ангарская нефтехимическая компания"
ЛУКОЙЛ-Супер (SAE 15W-40, API CF-4/SG) M-53/14-E	CTO 00044434- 001-2005	ООО "ЛУКойл- Пермнефтеоргсинтез"
Рольс Турбо (SAE 15W-40, API CF-4/SF) M-53/14-E	ТУ 38.301-41- 185-99	ОАО "Рязанский НПЗ"


Марка масла	Номер стандарта	Предприятие-изготовитель
Спектрол Чемпион	ТУ 0253-15-	ЗАО ПГ "Спектр- Авто"
(SAE 15W-40, API	06913380-98	г. Москва
CF-4/SG) M-53/14-E		
ВНИИ НП	ТУ 38.401-58-	ОАО "Роснефть МОПЗ
М-53/16-Д2	309-2002	"Нефтепродукт"
Лукойл-Супер	CTO 00044434-	ОАО "ЛУКойл-
(SAE 10W-40 API	001-2005	Нижегороднефтеоргсинтез"
СF-4/SG) М-43/14-Е Экойл-Турбодизель		
(SAE 5W-40, 10W-40,	ТУ 0253-009-	ООО «ПромЭко», г. Уфа
(SAE 3W-40, 10W-40, 15W-40, API CF-4/SJ)	39968232-2003	
THK Revolux D2		
(SAE 10W-40, 15W-40	ТУ 0253-002-	ООО «ТНК - смазочные
API CG-4/CF/SJ)	44918199-2005	материалы»
Роснефть Махітит		
Diesel (SAE 5W-40,	ТУ 0253-061-	ООО «Новокуйбышевский
10W-40, API CF-4/SJ)	48120848-2008	завод масел и присадок»
Роснефть Optimum	TV 0252 056	000 11 75
Diesel (SAE 15W-40,	ТУ 0253-056-	ООО «Новокуйбышевский
API CF-4/SJ)	48120848-2008	завод масел и присадок»
Дизель Экстра	TV 20 201 10 126	ООО «Газпромнефть-
(SAE 10W-40, 15W-	ТУ 38.301-19-136- 2002	смазочные материалы»
40, API CF-4/CF/SG)	2002	смазочные материалы»
Дизель Приоритет	ТУ 38.301-19-	ООО «Газпромнефть-
(SAE 10W-40, 15W-40,	138-2005	смазочные материалы»
API CG-4/CF-4/CF/SJ)	130-2003	•
G-Profi MSH (SAE 10W-	_	ООО «Газпромнефть-
40, 15W-40, API CH-4/SJ)		смазочные материалы»
ZIC SD 5000 (SAE 30,	_	SK Corporation (Корея)
10W-30, 15W-40, API CF-4)		(
Татнефть-Профи	ТУ 0253-002-	ООО «Татнефть-
(SAE 5W-40, 10W-40,	54409843-2006	Нижнекамскнефтехим-Ойл»
15W-40, API CF-4/SH, SG)		
Consol Tutah Tpah3ut	ТУ 0253-007-	ООО "ВИАЛ ОЙЛ",
(SAE 15W-40, API CF-4/ SG) M-53/14-E	17280618-2000	г. Москва
SELECT Lubricants		
	ТУ 0253-005-	ЗАО «НК «Селект»,
Magnum (SAE 10W-40, 15W-40, API CF-4/SG)	53963514-05	г. Фрязино, Московской обл.
Mobil Delvac Super		
1400 (SAE 15W-40, API		
CG-4/CF/SJ)		
Mobil Delvac MX Extra	-	Компания Exxon Mobil
(SAE 10W-40, API CI-4/		
CH-4/CG-4/CF-4/CF/SL/SJ)		
C11 1/CG 1/C1 -1/C1/5L/SJ)		

Марка масла	Номер стандарта	Предприятие-изготовитель
Mobil Delvac MX (SAE 15W-40, API CI-4/ CH-4/CG-4/CF-4/CF/SL/SJ)	-	Компания Exxon Mobil
Shell Rimula D (Shell Rimula R2) (SAE 10W- 30, 15W-40,API CF-4/SG)	-	Shell East Europe Co
Ravenol Turbo-Plus SHPD, (SAE 10W-40, 15W-40, API CI-4/CH-4/ CG-4/CF/SL) Ravenol Expert SHPD (SAE 10W-40, API CI-4/ CH-4/CG-4/CF/SL)	-	Компания Ravensberger Schmierstoffvertrieb GmbH, Deutschland

Примечание:

- 1. Для двигателей ЯМЗ, удовлетворяющих экологическим нормативам Евро-2, рекомендуется работа только на указанных выше всесезонных маслах со сроком смены 1000 часов.
- 2. Для двигателей ЯМЗ с турбонаддувом, удовлетворяющих экологическим нормативам Евро-2, допускается использование масел групп ЯМЗ-2-97 ÷ ЯМЗ-3-02 (п. 2.1) со сроком смены вдвое меньшим, чем для масел групп ЯМЗ-4-02.
- 3. Для двигателей ЯМЗ с турбонаддувом, удовлетворяющих экологическим нормативам Евро-2 и работающих за рубежом, допускается применение импортных моторных масел с уровнем эксплуатационных свойств по API не ниже группы СG-4, классов вязкости, указанных в пункте 1.

3. РЕКОМЕНДУЕМЫЕ ДЛЯ ЭКСПЛУАТАЦИИ КЛАССЫ ВЯЗКОСТИ ТРАНСМИССИОННЫХ МАСЕЛ В ЗАВИСИ-МОСТИ ОТ ТЕМПЕРАТУРЫ ОКРУЖАЮЩЕГО ВОЗДУХА, ⁰С

4. ПЕРЕЧЕНЬ ТРАНСМИССИОННЫХ МАСЕЛ, ДОПУЩЕННЫХ ДЛЯ ЭКСПЛУАТАЦИИ КОРОБОК ПЕРЕДАЧ ЯМЗ

-		
Марка масла	Номер стандарта	Предприятие-изготовитель
ТСп-15К	EOCT 22(52.70	ОАО "Омский НПЗ", ОАО "Ярос-
SAE 85W-90 GL-3	ГОСТ 23652-79	лавский НПЗ им. Менделеева"
TC 1516		ООО "ЛУКОЙЛ – Волго-
ТСп-15К	ГОСТ 23652-79	граднефтепереработка",
SAE 80W-90 GL-3	1001200277	ООО НПЦ "ИсанТАТ"
Ангрол ТСп-15К	EO CE 22 (52 50	ОАО "Ангарская нефтехи-
SAE 85W-90 GL-3	ГОСТ 23652-79	мическая компания"
TAH 1711		ОАО "Завод им. Шаумяна"
ТАД - 17И	ГОСТ 23652-79	ООО "ЛУКОЙЛ – Волго-
SAE 85W-90 GL-5		граднефтепереработка"
Омскойл К	ТУ 0253-019-	0.4.0.40 × 111722
SAE 80W-90 GL-3	00219158-95	ОАО "Омский НПЗ"
"Яр.МаркаТ"	ТУ 0253-019-	
SAE 80W-90 GL-3	00219158-95	
ЯрМарка Супер Э	ТУ 0253-018-	ОАО "Славнефть –
SAE 80W-90 GL-5	00219158-96	Ярославнефтеоргсинтез"
ЯрМарка Гипоид	ТУ 0253-021-	
SAE 85W-90 GL-5	00219158-96	
ТМ-3-18к	ТУ 0253-005-	040 "0 - 1 2"
SAE 85W-90 GL-3	57352960-02	ОАО "Орскнефтеоргсинтез"
ЛУКОЙЛ ТМ	ТУ 38.40144-	ООО "ЛУКОЙЛ –
типа ТСп-14гип	2001	0 0 0 111 110 111
SAE 85W-90 GL-5	2001	Волгограднефтепереработка"
ЛУКОЙЛ ТМ-5-18	ТУ 38.601-	ООО "ЛУКОЙЛ –
SAE 75W-90 GL-5	07-23-03	Нижегороднефтеоргсинтез"
ЛУКОЙЛ ТМ-5	ТУ 0253-071-	ООО "ЛУКОЙЛ –
SAE 85W-90 GL-5	00148636-95	Пермнефтеоргсинтез"
Татнефть ТМ-5-18	ТУ 0253-003-	ООО "Татнефть –
SAE 75W-90 GL-5	54409843-03	Нижнекамскнефтехим-Ойл"
TITAN 5 SPEED SL		FUCHS PETROLUB AG г. Маннгейм
SAE 75W-90 GL-5LS/	_	ООО "ФУКС ОЙЛ" г. Ярославль
GL-5/GL-4/GL-3		000 ФУКС 0111 1. прославлв
Mobilube 1SHC SAE		
75W-90 GL-5/GL-4/MT1	_	Компания "Exxon Mobil"
Mobilube GX		KOMIIGHIA LAAUII WOOII
SAE 80W-90 GL-4		
Транс КП-4	_	ООО "Газпромнефть –
SAE 80W-90 GL-4		смазочные материалы"

Примечание: Для коробок, эксплуатирующихся за рубежом, допускается применение импортных трансмиссионных масел с

уровнем эксплуатационных свойств по API не менее GL-4, классов вязкости, указанных в пункте 3.

5. ПЕРЕЧЕНЬ МАСЕЛ, ИСПОЛЬЗУЮЩИХСЯ ПРИ ПЕРВОЙ ЗАПРАВКЕ ДВИГАТЕЛЕЙ ЯМЗ

Заправка двигателей маслами первой заливки производится на ОАО «Автодизель». Двигатели поставляются потребителям заправленными маслами из приведенного ниже перечня.

Марка масла	Номер стандарта	Предприятие-изготовитель
Газпромнефть МПЗ-ГАЗ: Марка 1; Марка 2	CTO 84035624-016-2009	ООО «Газпромнефть – Смазочные материалы»
Лукойл-МЗк	CTO 00148636-003-2007	НК «Лукойл»

Масло первой заливки подлежит сливу после обкаточного периода при TO по окончании периода обкатки (через 50 часов).

РЕКОМЕНДУЕМЫЕ ОХЛАЖДАЮЩИЕ ЖИДКОСТИ

Марка	Номер стандарта	Предприятие-изготовитель
Тосол-А40М* Тосол-А65М* Тосол –АМ*	TV 6-57-95- 96	ООО «ЛУКойл-Пермнефтеоргсинтез» АО «Оргсинтез», г. Дзержинск Нижегородской обл. АО «Оргсинтез», г. Казань АО «Синтез Каучук», г. Казань СП «САГОЭР», г. Нижнекамск СП «СИНИОН», г. Нижнекамск ООО «Химресурс», г Москва ОАО «Пермский завод смазоки СОЖ», г. Пермь ООО «Нова-Нефтехим», г. Дзержинск Нижегородской обл.
Тосол А-40М Тосол А-65М	ТУ 2422-002- 41651324-99	ООО «Инфант Про», г. Кострома
Тосол А-40М	ТУ 2422-002- 26759308-95	ООО «НПП Спецавиа», Тверская обл., Конаковский р-н, п.г.т. Редкино
Тосол Э40	ТУ 2422-001-	ООО «Дзержинскхимпромсервис»,
Тосол Э65	47536305-97	г. Дзержинск Нижегородской обл.
ОЖ-40 Лена* ОЖ-65 Лена*	ТУ 113-07-02- 88	ОАО «Сибур-Нефтехим», г. Дзержинск Нижегородской обл.; ООО «НПП Спецавиа», Тверская обл. Конаковский р-н, п.г.т. Редкино; ЗАО «Завод органических продуктов», г. Дзержинск Нижегородской обл.

Марка	Номер стандарта	Предприятие-изготовитель
ОЖ-40* ОЖ-65*	ΓΟCT 28084-89	УОЗ МНХП, г. Уфа
Cool Stream Standard 40**	ТУ 2422-002- 13331543-2004	ОАО «Техноформ», Московская область, г. Климовск
Премиум-С (Premium-C) Премиум-40 (Premium-40) Премиум-65 (Premium-65)	TY 2422-002- 58113890-2005	ЗАО «Рустрансавто», г Москва
ОЖ-К «Сибур-Премиум» ОЖ-40 «Сибур-Премиум» ОЖ-65 «Сибур-Премиум»	TV 2422-054- 52470175-2006	ОАО «Сибур-Нефтехим», г. Дзержинск Нижегородской обл.
Тосол-Север-40	52600040-2000	ООО "Гелена Химавто", г. Москва
ОЖ-К** ОЖ-35** ОЖ-40** ОЖ-65**	ТУ 2422-047- 51140047-2007	ЗАО «Обнинскоргсинтез», г. Обнинск
Cool West Advance C** (концентрат) Cool West Advance 40** Cool West Advance 65**	TV 2422-005- 14331137-2007	ЗАО «Завод органических продуктов», г. Дзержинск Нижегородской обл.
Концентрат госола «Felix®» Тосол (- 45) «Felix®» Тосол (- 65) «Felix®»	ТУ 2422-006- 36732629-99	ООО «Тосол-Синтез-Инвест», г. Дзержинск Нижегородской обл.
Концентрат антифриза X-Freeze Carbox [®] (Felix [®] Carbox [®])** Антифриз «X-Freeze Carbox [®] » (Felix [®] Carbox [®])** Антифриз (-65) «X-Freeze Carbox [®] » (Felix [®] Carbox [®])**	TУ2422-068- 36732629-2006	ООО «Тосол-Синтез-Инвест», г. Дзержинск Нижегородской обл.

Примечания:

- 1. Указанные охлаждающие жидкости предназначены для круглогодичного использования в системе охлаждения двигателей ЯМЗ в течение 3 лет с последующей заменой.
- 2. Для двигателей, эксплуатирующихся за рубежом, рекомендуются жидкости на основе этиленгликоля, соответствующие требованиям спецификаций SAE J 1034 (США), ASTM D6210, D4985 (США), ANFOR NF R 15-601 (Франция).
- 3. Концентрат ОЖ-К предназначен для приготовления рабочих охлаждающих жидкостей ОЖ-65 и ОЖ-40 (ОЖ-35) путем разбавления водой в пропорциях, указанных в НТД на конкретную марку жилкости.
- 4. Охлаждающую жидкость марки ОЖ-35 рекомендуется использовать при температурах окружающего воздуха не ниже минус 35° C, марки ОЖ-40 не ниже минус 40° C, марки ОЖ-65 не ниже минус 65° C.
- 5. Охлаждающие жидкости, отмеченные знаком *, включены в ограничительный перечень ГОСТ РВ 50920-2005 и рекомендуются для двигателей ЯМЗ, поставляемых для изделий МО РФ.
- 6. Охлаждающие жидкости, отмеченные знаком **, относятся к классу карбоксилатных охлаждающих жидкостей.

При использовании карбоксилатных охлаждающих жидкостей в условиях эксплуатации доливы в систему охлаждения рекомендуется производить аналогичными карбоксилатными жидкостями.

Перед первой заливкой карбоксилатной охлаждающей жидкости необходимо слить старую жидкость, систему охлаждения промыть дистиллированной или отстоянной прокипяченной водой и после этого залить новую жидкость.

- 7. При отсутствии рекомендованных охлаждающих жидкостей допускается в качестве охлаждающей жидкости применение воды, удовлетворяющей следующим требованиям:
 - степень жесткости не более 2,15 (мг×экв)/л (43 мг/л CaO);
 - водородный показатель pH (при 20°C) 6-8;
 - содержание ионов Cl не более 100 мг/л;
 - содержание ионов SO₄ не более 100 мг/л;
 - общее содержание солей (остаток после испарения) не более 200 мг/л.

В случае жесткости воды более 2,15 (мг \times экв)/л произвести ее «умягчение». Для этого добавить в воду карбонат натрия (Na₂CO₃) в количестве 0,4 %. «Умягчение» воды проводить вне системы охлаждения двигателя, т.к. эта операция сопровождается выделением солей кальция и магния, которые удалить отстаиванием и фильтрацией.

Для частичного устранения жесткости воду прокипятить и дать ей отстояться, а затем профильтровать.

РЕКОМЕНДУЕМЫЕ ФИЛЬТРУЮЩИЕ ЭЛЕМЕНТЫ И СМЕННЫЕ ФИЛЬТРЫ

Предприятие- изготовитель	Обозначение и наименование	Номер стандарта, ТУ и ДИ	
СОАО «ДИФА» Республика Беларусь, г. Гродно, ул. Белуша, 45 тел. (0152) 75-55-22 факс (0152) 75-58-60 «Торговый дом автофильтр ДИФА» г. Москва, ул. Яблочкова, 5, тел./факс (495) 979-57-79, 979-89-37	840.1012039 (040)-12 (М5302) бумага ЭФ очистки масла	OCT 37.001.417-90 TV 37.319.211-84	
	840.1012039 (040)-15 (М5203) синт. полотно ЭФ очистки масла	OCT 37.001.417-90 840-1012040-14 ДИ	
	ЛДКЯ 387631.071 (код 8.9193) бумага Фильтр сменный для топлива Т6103	ГОСТ 14146-88 ТУ 37.319.210-84	
ООО «МАНН+ХУММЕЛЬ» РФ, г. Москва, ул. Коненкова, 11А	536.1117075 (код 8.9133) бумага Фильтр сменный для топлива WDK 940/1 (66 505 59 658)	ГОСТ 14146-88 ТУ 37.319.210-84	
ОАО «Автоагрегат», РФ г. Ливны, Орловская обл., ул. Индустриальная, 2А, тел. (48677) 3-27-69 факс (48677) 3-20-36		ГОСТ 14146-88 ТУ 37.319.210-84	
ООО Костромское ПО «Автофильтр» ВОС, РФ, 156007, г. Кострома, ул. Пушкина, 43 тел./факс (0942) 55-08-11, 55-09-91, 55-09-11	201.1105540 (538) ровничная пряжа х/б ЭФ предварительной очистки топлива	ГОСТ 14146-88 ТУ 37.319.076-79	
ЗАО "МЕТИЗ" Ярославская обл., г. Тутаев, ул. Строителей, 9а, тел. (08533) 2-08-89	840.1012039 (040)-14 (М5203) синт. полотно ЭФ очистки масла	OCT 37.001.417-90 840-1012040-14 ДИ	

На двигателях ЯМЗ применять фильтрующие элементы и сменные фильтры, имеющие Сертификат соответствия, выданный соответствующим центром по сертификации, и изготовленных в период действия допуска на применение, выданного ОАО «Автодизель».

РЕКОМЕНДУЕМЫЕ ПЛАСТИЧНЫЕ СМАЗКИ

	Узел	Марка	ТУ	Предприятие- изготовитель	
Двигатель	Шлицевая часть вала якоря привода стартера	Лита	ТУ 38.1011308- 90	Ростовский ОНМЗ	
		ЦИАТИМ-201	ГОСТ 6267-74	Ростовский ОНМЗ	
	Подшипники водяного насоса Подшипники шкива натяжного устройства	Литол - 24	ГОСТ21150-87	Бердянский ОНМЗ ПО "Омскнефтеоргсинтез" Ростовский ОНМЗ ОАО "СлавнефтьЯрославнефтеоргсинтез"	
		ЦИАТИМ-201	ГОСТ 6267-74	Ростовский ОНМЗ	
Коробка передач и сцепление	Муфта выключения сцепления Подшипник вала вилки выключения сцепления	ШРУС -4	ТУ 0254-001- 05766076-98	Ростовский ОНМЗ Ростовский ОНМЗ	
		ШРУС-4М	ТУ 38401-58- 128-95		
	Подшипник первичного вала коробки передач (в коленчатом вале двигателя)	Лита	ТУ 38.1011308- 90		
	Воздухораспреде- литель	№ 158	ТУ38.1011308- 90	Ростовский ОНМЗ	
		Литол - 24	ГОСТ 21150-87	Бердянский ОНМЗ ПО "Омскнефтеоргсинтез" Ростовский ОНМЗ ОАО "СлавнефтьЯрославнефтеоргсинтез"	
		ЦИАТИМ-201	ГОСТ 6267-74	Ростовский ОНМЗ	

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

При эксплуатации двигателя необходимо соблюдать следующие ниже требования безопасности. Помните, что соблюдение техники безопасности необходимо прежде всего для Вас:

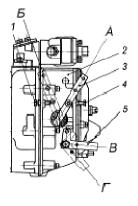
- Внимательно изучить настоящее руководство по эксплуатации двигателя, прежде чем приступить к его эксплуатации.
- Перед началом работы осмотреть двигатель, убедиться в его исправности и только тогда приступать к его запуску. Для облегчения запуска при низких температурах запрещается пользоваться открытым пламенем для прогрева трубопроводов и масла в поддоне двигателя.
- Заправку топливом и маслом производить с помощью насосной установки, оборудованной фильтром тонкой очистки.
- Ежедневно проверять состояние трубопроводов и соединений. Не допускать подтеканий топлива и масла. Своевременно очищать и вытирать все части двигателя.
- Во время пуска и работы двигателя не допускать к нему посторонних лиц.
- Во время пуска, работы и после остановки двигателя запрещается останавливать крыльчатку вентилятора с помощью каких-либо подручных средств.
- Не смазывать, не регулировать и не обтирать работающий двигатель.
- При выполнении работ по техническому обслуживанию, осмотру и ремонту пользуйтесь низковольтным освещением до 36В.
- Запрещается прогревать двигатель в закрытых помещениях с плохой вентиляцией во избежание отравления угарным газом.
- При проведении технического обслуживания использовать только исправный инструмент, соответствующий своему назначению.
- При перегреве двигателя крышку заливной горловины в системе охлаждения открывать в рукавицах, соблюдая осторожность, т. к. может произойти выброс горячей воды и пара.
- Избегать возможности получения ожогов при сливе масла. Помните, что ожоги от масла носят химический характер.
- Помните, что этиленгликолевые жидкости и "Тосол" ядовиты при попадании внутрь организма.
- При тушении разлитого воспламенившегося топлива применять огнетушители, засыпать пламя песком, накрыть асбестовым одеялом, войлоком или брезентом. Не заливать пламя водой.
- При проведении электросварочных работ непосредственно на автомобиле с целью предотвращения выхода из строя релерегулятора необходимо отключить выключатель «массы» и отсоединить провод с клеммы «+» генератора. Провод массы сварочного аппарата должен быть подсоединен в непосредственной близости от сварного шва.

ПУСК, РАБОТА И ОСТАНОВКА СИЛОВОГО АГРЕГАТА

ПОДГОТОВКА К ПУСКУ НОВОГО СИЛОВОГО АГРЕГАТА, А ТАКЖЕ, ПОСЛЕ ДЛИТЕЛЬНОЙ СТОЯНКИ, Т О И РЕМОНТА

Правила настоящего раздела подготовки к пуску распространяются на первичный пуск силового агрегата в следующих случаях:

- Нового силового агрегата.
- Силового агрегата, не работавшего длительное время (5 суток и более).
- Силового агрегата, прошедшего очередное техническое обслуживание.
- После смены масла и/или масляного фильтрующего элемента.
- Ремонта двигателя, а особенно после замены или ремонта турбокомпрессора и других сборочных единиц и деталей, смазываемых под давлением.
- Капитально отремонтированного силового агрегата.


Первичный пуск следует производить по возможности в теплом помещении. Силовой агрегат к пуску следует готовить в указанной ниже последовательности:

- 1. Удалить консервирующую смазку и очистить от пыли и грязи.
- 2. Произвести тщательный наружный осмотр силового агрегата и установленных на нем агрегатов. Убедиться в отсутствии посторонних предметов.
- 3. Если при длительной стоянке производился ремонт или осмотр с разборкой отдельных узлов и агрегатов, необходимо дополнительно тщательно осмотреть и проверить ремонтировавшиеся или разбиравшиеся агрегаты и узлы, проверить и, при необходимости, отрегулировать тепловые зазоры в приводе клапанов.
- 4. Проверить состояние подвески двигателя и коробки передач, а также соединения в системах смазки, охлаждения и питания.

- 5. Проверить соединения и надежность крепления топливопроводов.
- 6. Проверить надежность соединения и легкость хода деталей механизма управления подачей топлива.
- 7. Очистить от пыли и грязи маслозаливную горловину двигателя, открыть крышку и залить в поддон двигателя, до метки "В" указателя уровня масла, чистое масло рекомендуемой марки в зависимости от температуры окружающего воздуха. После заливки масла горловину плотно закрыть крышкой.
- 8. Очистить от пыли и грязи заливную горловину топливного бака, открыть крышку заливной горловины, убедиться в чистоте топливного бака, залить в бак чистое топливо рекомендуемой марки в зависимости от температуры окружающего воздуха, после чего плотно закрыть заливную горловину крышкой.
- 9. Заполнить топливом систему питания двигателя с помощью ручного топливоподкачивающего насоса.
- 10. Залить в систему охлаждения охлаждающую жидкость рекомендуемой марки.
- 11. Очистить от пыли и грязи маслозаливную и контрольную пробку коробки передач, отвернуть их и залить в картер, до контрольного отверстия уровня масла, чистое масло рекомендуемой марки в зависимости от температуры окружающего воздуха. После заливки масла пробки плотно завернуть.
- 12. Наружным осмотром убедиться в герметичности трубопроводов и агрегатов систем смазки, питания и охлаждения. При необходимости подтянуть соединения. При наличии подтеканий масла после заливки по сливным пробкам двигателя и коробки передач, пробке контрольного отверстия коробки передач произвести их затяжку до устранения подтекания масла (момент затяжки пробок 140...160 Н·м (14...16 кгс·м) для двигателя, 88,3...108 Н·м (9...11 кгс·м) для коробки передач, пробки контрольного отверстия коробки передач крутящим моментом, обеспечивающим отсутствие пропуска масла).
- 13. Установив рычаг регулятора в положение "Г" (рис. 50) выключенной подачи топлива, в течение 10-15 секунд провертывать стартером коленчатый вал двигателя и по показаниям манометра определить наличие давления масла в центральном масляном канале. Включатель привода вентилятора должен находится в положении «А» автоматическое. При наличии давления можно пускать двигатель.

ПОДГОТОВКА К ПУСКУ ПРИ ЕЖЕДНЕВНОЙ ЭКСПЛУАТАЦИИ

- 1. Убедиться в наличии достаточного количества топлива в баке.
- 2. Проверить уровень масла в поддоне двигателя, при необходимости залить чистое масло до верхней метки указателя уровня масла.
- 3. Проверить наличие охлаждающей жидкости и её уровень в системе охлаждения.
- 4. Проверить надежность соединения и легкость хода деталей механизма управления подачей топлива.
- 5. Заполнить топливом систему питания двигателя с помощью ручного топливоподкачивающего насоса.
- 6. Наружным осмотром убедиться в герметичности трубопроводов и агрегатов систем смазки, питания и охлаждения.
 - 7. Проверить натяжение ремней привода генератора.
- 8. Для пуска холодного двигателя при температурах 10°C воздуха ниже минус следует использовать электрофакельное устройство. С помощью электрофакельного устройства без подогрева двигатели можно пускать до температуры окружающего воздуха минус 22°С. При более низких температурах следует предварительно прогреть двигатель помошью дополнительного пускового подогревательного устройства.

ПУСК ДВИГАТЕЛЯ

Рис. 50. Регулятор частоты вращения:

1 - болт ограничения максимальной частоты вращения; 2 - регулятор; 3 - рычаг управления регулятором корпус буферной пружины; 4 - болт ограничения минимальной частоты вращения; 5 - рычаг останова.

А - положение рычага при минимальной частоте вращения холостого хода; Б - положение рычага при максимальной частоте вращения; В-положение рычага при работе; Γ - положение рычага при выключенной подаче

Рычаг 5 (рис. 50) останова регулятора установить в положение "В" включенной подачи топлива, а рычаг 3 управления регулятором – в положение "А", соответствующее минимальной частоте вращения.

При пуске двигателя зимой рычаг управления регулятором рекомендуется установить в среднее положение.

Для пуска двигателя включить стартер; как только двигатель начнет устойчиво работать, стартер выключить. Продолжительность непрерывной работы стартера не должна превышать 10 секунд при положительной температуре и 20 секунд при отрицательной температуре. Более длительная непрерывная работа стартера приведет к перегреву его электродвигателя и выходу стартера из строя. Если через указанное время двигатель не начнет устойчиво работать, то выключить стартер и, спустя 1-1,5 минуты, повторить пуск.

Если после трех попыток двигатель не начнет работать, следует найти и устранить неисправность.

При неудачном пуске в зимнее время повернуть рычаг останова в положение выключенной подачи, затем в рабочее положение, после чего повторить пуск.

После пуска двигатель должен работать на оборотах холостого хода, не превышающих 1000 об/мин, но не более 5 минут. ВНИМАНИЕ! ЗАПРЕЩАЕТСЯ ПУСК ДВИГАТЕЛЯ ОТ ПОСТОРОННЕГО ИСТОЧНИКА ЭЛЕКТРОЭНЕРГИИ С ХАРАКТЕРИСТИКАМИ, ПРЕВЫШАЮИМИ 24 В, 500 А, ИЛИ СУММАРНОЙ ЕМКОСТЬЮ АККУМУЛЯТОРНЫХ БАТАРЕЙ СВЫШЕ 270 А.Ч. ВКЛЮЧЕНИЕ СТАРТЕРА ПРИ РАБОТАЮЩЕМ ДВИГАТЕЛЕ НЕДОПУСТИМО

После пуска прогрев двигателя до рабочих температур производить под нагрузкой. Не следует прогревать двигатель, допуская его длительную работу на минимальной частоте вращения холостого хода. Как только двигатель начнет реагировать на изменение подачи топлива и в системе тормозов будет обеспечено нормальное рабочее давление, постепенно увеличивать частоту вращения до средней рабочей и начинать движение на пониженных передачах.

ВНИМАНИЕ! ПОЛНАЯ НАГРУЗКА НЕПРОГРЕТОГО ДО РАБОЧЕЙ ТЕМПЕРАТУРЫ ДВИГАТЕЛЯ **НЕ ДОПУСКАЕТСЯ**

В случае необходимости минимальная частота вращения холостого хода может быть подрегулирована в соответствие с рекомендациями раздела «Установка ТНВД на двигатель».

ПУСК ДВИГАТЕЛЯ С ПОМОЩЬЮ ЭЛЕКТРОФАКЕЛЬНОГО УСТРОЙСТВА (ЭФУ)

ВНИМАНИЕ! ПРИ ПУСКЕ ДВИГАТЕЛЯ С ПРИМЕНЕНИЕМ ЭФУ КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ПОЛЬЗОВАТЬСЯ ПОСТОРОННИМИ ИСТОЧНИКАМИ ЭЛЕКТРОЭНЕРГИИ ПОВЫШЕННОЙ МОЩНОСТИ. ФАКЕЛЬНЫЕ ШТИФТОВЫЕ СВЕЧИ РАССЧИТАНЫ НА РАБОЧЕЕ НАПРЯЖЕНИЕ ПОРЯДКА 19 В. ПРИ ПОВЫШЕНИИ НАПРЯЖЕНИЯ НА СВЕЧАХ СВЫШЕ 21 В СВЕЧИ БЫСТРО ВЫХОДЯТ ИЗ СТРОЯ.

- 1. Подготовить двигатель к пуску как указано выше. Рычаг 5 (рис. 50) останова регулятора установить в положение "В" включенной подачи топлива, а рычаг 3 управления регулятором повернуть в среднее положение.
- 2. Включить выключатель массы аккумуляторных батарей и установить поворотом ключа ходовой переключатель в первое фиксированное положение.
- 3. Нажать кнопку включения электрофакельного устройства (ЭФУ) и удерживать ее в течение всего времени работы устройства. В период нагрева свечей амперметр в кабине водителя должен показывать разрядный ток около 23 А.
- 4. После загорания контрольной лампочки (ориентировочно через 60 110 секунд после нажатия кнопки включения ЭФУ) включить стартер.
- 5. После пуска двигателя до достижения устойчивой частоты вращения допускается работа электрофакельного устройства, но продолжительностью не более 1 мин, затем кнопку отпустить. Если двигатель не запустился, повторный пуск произвести в той же последовательности. Очередной прогрев свечи рекомендуется начинать через 20-25 секунд после окончания предыдущего запуска двигателя.

После установки ЭФУ на двигатель или после длительного перерыва в работе прокачать топливную систему, для чего при работающем двигателе нажать кнопку включателя ЭФУ и удерживать ее около 30 секунд после загорания контрольной лампочки.

Вышедшие из строя свечи ремонту не подлежат.

КОНТРОЛЬ ЗА РАБОТОЙ СИЛОВОГО АГРЕГАТА

При эксплуатации двигателя следить за показаниями контрольно-измерительных приборов и сигнальных устройств:

1. Температура охлаждающей жидкости двигателя должна быть в пределах 75...90°С. Допускается кратковременное (до 10 мин) повышение температуры до 95°С. Допускается предельная температура охлаждающей жидкости до 95°С при применении моторных масел повышенной вязкости, не ниже M-4₃/14 (SAE 10W-40). При этом допускается кратковременное (до 10 мин) повышение температуры охлаждающей жидкости до 100°С.

После пуска прогрев двигателя до рабочих температур производить под нагрузкой. Не следует прогревать двигатель, допуская его длительную работу на минимальной частоте вращения холостого хода. Как только двигатель реагировать на изменение подачи топлива и в системе тормозов будет обеспечено нормальное рабочее давление, постепенно увеличивать частоту вращения до средней рабочей и начинать движение пониженных передачах. Полная на непрогретого двигателя не допускается. Не допускать работу под нагрузкой при температуре охлаждающей жидкости ниже 50°C, т.к. при этом значительно ухудшается сгорание топлива, на стенках гильз конденсируются продукты неполного сгорания, резко возрастает износ гильз цилиндров и поршневых колец. снижается экономичность Признаком готовности двигателя к принятию нагрузки является его реагирование на изменение подачи топлива.

- 2. Давление масла в магистрали блока прогретого двигателя должно быть в пределах $400...700~\mathrm{k\Pi a}~(4...7~\mathrm{krc/cm^2})$ при номинальной частоте вращения и не менее $100~\mathrm{k\Pi a}~(1,0~\mathrm{krc/cm^2})$ при минимальной частоте вращения коленчатого вала. После длительной эксплуатации двигателя допускается падение давления масла не ниже $300~\mathrm{k\Pi a}~(3,0~\mathrm{krc/cm^2})$ при номинальной частоте вращения и не ниже $50~\mathrm{k\Pi a}~(0,5~\mathrm{krc/cm^2})$ при минимальной частоте вращения холостого хода.
- 3. Если при работе двигателя горит лампа светового сигнализатора масляного фильтра, следует заменить фильтрующие элементы. Работа двигателя со светящейся лампой сигнализатора не допускается. Горение лампочки допускается не более 1 минуты после пуска двигателя.

4. При сигнале индикатора засоренности воздушного фильтра работа двигателя **не допускается**. Произвести обслуживание воздушного фильтра или заменить фильтрующие элементы.

При эксплуатации двигателя в период обкатки допускается выделение смеси топлива и масла через систему выпуска. Образование масляных пятен в местах сальниковых уплотнений, не влияющих на расход масла, "потение" в соединениях систем топливоподачи, смазывания и охлаждения, выделение отдельных капель охлаждающей жидкости или смеси ее со смазкой через дренаж водяного насоса, образование отдельных капель масла и выделение конденсата через сапун, не нарушающие нормальную двигателя. окончании приработки цилиндроработу По поршневой топливно-масляной группы выброс смеси прекращается.

При работе силового агрегата следите за появлением посторонних шумов.

ОСТАНОВКА ДВИГАТЕЛЯ

Перед остановкой двигатель должен в течение 3-5 минут работать без нагрузки при средней частоте вращения коленчатого вала.

Для остановки уменьшить частоту вращения до минимальной, после чего поворотом рычага останова регулятора остановить двигатель.

В зимнее время на время стоянки рычаг останова зафиксировать в положении выключенной подачи.

ОБКАТКА НОВОГО ДВИГАТЕЛЯ

Обкатка двигателя происходит в течение первых 50 часов работы. В этот период рекомендуется избегать полных нагрузок и высоких оборотов двигателя. В период обкатки происходит равномерная приработка деталей цилиндро-поршневой группы, шестерен, подшипников и других деталей в целях сокращения их последующего износа, стабилизируется расход масла. Перегрузка в этот период отрицательно скажется на приработке деталей и повлечет за собой сокращение срока службы двигателя.

По окончании периода обкатки (через 50 часов) выполнять обслуживание в объеме, указанном в разделе «Техническое обслуживание по окончании периода обкатки» настоящего руководства по эксплуатации.

ОСОБЕННОСТИ ЗИМНЕЙ ЭКСПЛУАТАЦИИ

Для обеспечения бесперебойной работы двигателя в зимних условиях своевременно провести сезонное обслуживание, в ходе которого заменить эксплуатационные материалы зимними сортами и при работе руководствоваться общими правилами зимней эксплуатации.

Рекомендуется утеплять топливные баки, фильтр грубой очистки топлива, топливопроводы и аккумуляторные батареи.

В качестве охлаждающей жидкости применять низкозамерзающую охлаждающую жидкость (см. раздел "Эксплуатационные материалы"), соответствующую климатическим условиям. Этиленгликолевые охлаждающие жидкости имеют больший, чем вода, коэффициент объемного расширения, поэтому заливать их в систему охлаждения двигателя нужно на 1,5 литра меньше установленной для воды заправочной емкости.

Необходимо помнить, что антифриз ядовит при попадании внутрь, но в то же время безопасен для наружных кожных покровов и органов дыхания.

Если объем охлаждающей жидкости уменьшился за счет испарения, а не из-за течи, в систему охлаждения добавлять только воду, так как количество этиленгликоля вследствие высокой температуры его кипения остается постоянным.

Если для охлаждения двигателя применяется вода, то при отрицательных температурах окружающего воздуха и при отсутствии подогрева после окончания работы слить воду из системы охлаждения во избежание размораживания двигателя. Другие ограничения по применению воды при отрицательных температурах см. Руководство по эксплуатации изделия.

Электропусковая система двигателей при исправных аккумуляторных батареях и использовании зимних моторных масел и топлив обеспечивает пуск при температурах окружающей среды до минус 10°С. При использовании электрофакельного устройства пуск обеспечивается до минус 22°С, а при температурах окружающей среды ниже минус 22°С пуск производить после прогрева двигателя дополнительным подогревательным устройством. При зимней эксплуатации следить за температурой охлаждающей жидкости, при ее понижении до 70°С утеплить капот и радиатор защитными кожухами.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Надежная работа силового агрегата и длительный срок его службы обеспечиваются своевременным проведением технического обслуживания. Работы по техническому обслуживанию являются профилактическими, поэтому их выполнение обязательно в строго установленные сроки в течение всего периода эксплуатации. Техническое обслуживание силового агрегата, установленного на автомобиле, следует проводить одновременно с техническим обслуживанием автомобиля.

ОБЩИЕ УКАЗАНИЯ ПО ОБСЛУЖИВАНИЮ

Поддерживать силовой агрегат в чистоте, регулярно очищая его от пыли и грязи. Следить за затяжкой резьбовых соединений.

Техническое обслуживание силовых агрегатов по периодичности и перечню выполняемых работ подразделяется на следующие виды:

Ежедневное техническое обслуживание выполняется один раз в сутки по окончании суточной работы.

Техническое обслуживание по окончании периода обкатки выполняется после первых 50 часов работы двигателя.

Первое техническое обслуживание (ТО-1) выполняется через каждые 250 часов работы двигателя.

Второе техническое обслуживание (ТО-2) выполняется через каждые 1000 часов работы двигателя.

Сезонное техническое обслуживание.

ЕЖЕДНЕВНОЕ ОБСЛУЖИВАНИЕ (ЕО)

- 1. Проверить работу двигателя.
- 2. Осмотреть двигатель, если необходимо, очистить его от пыли и грязи, устранив возможные подтекания масла, топлива, охлаждающей жидкости.
- 3. Заполнить топливный бак топливом, не ожидая его охлаждения во избежание конденсации паров воды.
- 4. Проверить уровень масла в картере двигателя.
- 5. Проверить работу сцепления на транспортном средстве.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПО ОКОНЧАНИИ ПЕРИОДА ОБКАТКИ

- 1. Осмотреть двигатель, если необходимо, очистить его от пыли и грязи.
- 2. Подтянуть все внешние резьбовые соединения, устранив возможные подтекания масла, топлива, охлаждающей жидкости.
- 3. Проверить момент затяжки гаек шпилек крепления головок цилиндров и, при необходимости, подтянуть их на двигателях ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, их комплектациях.
- 4. Проверить и, при необходимости, отрегулировать тепловые зазоры в приводе клапанов механизма газораспределения.
- 5. Проверить и, при необходимости, отрегулировать установочный угол опережения впрыскивания топлива. Не допускать работу двигателя с деформированным пакетом пластин.
- 6. Подтянуть резьбовые соединения муфты привода топливного насоса высокого давления.
- 7. Проверить и, при необходимости, отрегулировать натяжение приводных ремней.
 - 8. Проверить момент затяжки болтов крепления стартера.
- 9. Прогреть двигатель до температуры охлаждающей жидкости 75...90°C.
 - 10. Заменить масло в системе смазки двигателя.
 - 11. Заменить фильтрующий элемент масла.
 - 12. Промыть фильтр центробежной очистки масла.
- 13. Провести техническое обслуживание коробки передач с заменой масла (см. раздел «Коробка передач»).
- 14. Провести техническое обслуживание сцепления (см. раздел «Сцепление»), в том числе включая перечень операций ЧЕРЕЗ ОДНО ТО-1 и при проведении ТО-2.

ПЕРВОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (TO-1)

- 1. Слить отстой из фильтра грубой очистки топлива, после чего пустить двигатель и дать ему проработать 3-4 минуты для удаления воздушных пробок. Зимой отстой сливать ежедневно после окончания работ.
- 2. Проверить натяжение приводных ремней и, при необходимости, отрегулировать.
 - 3. Промыть фильтр центробежной очистки масла.

- 4. При первом ТО-1 проверить момент затяжки гаек шпилек крепления головок цилиндров и, при необходимости, подтянуть их на двигателях ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, их комплектациях.
- 5. При первом ТО-1 снять форсунки и провести их техническое обслуживание на двигателях ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2, их комплектациях. В последующей эксплуатации обслуживание форсунок проводить при ТО-2 (1000 часов).
- 6. Проверить и, при необходимости, отрегулировать свободный ход муфты выключения двухдискового сцепления.
- 7. Провести техническое обслуживание коробки передач (см. раздел «Коробка передач»).

ЧЕРЕЗ ОДНО ТО-1 (через каждые 500 часов работы)

- 1. При первом ЧЕРЕЗ ОДНО ТО-1 снять форсунки и провести их техническое обслуживание на двигателях ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, их комплектациях. В последующей эксплуатации обслуживание форсунок при ТО-2 (1000 часов).
- 2. Заменить масло в системе смазки двигателей ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, их комплектациях.
- 3. Заменить фильтрующий элемент масляного фильтра на двигателях ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, их комплектациях. При свечении сигнализатора на прогретом двигателе элемент необходимо заменить не дожидаясь очередного технического обслуживания.
- 4. Заменить фильтрующий элемент фильтра грубой очистки топлива, промыть корпус фильтра на двигателях ЯМЗ-238Б, ЯМЗ-238Д, их комплектациях. При потере мощности двигателя фильтрующий элемент необходимо заменить не дожидаясь проведения очередного технического обслуживания.
- 5. Проверить и, при необходимости, отрегулировать установочный угол опережения впрыскивания топлива. Не допускать работу двигателя с деформированным пакетом пластин.
- 6. Подтянуть резьбовые соединения муфты привода топливного насоса высокого давления.
 - 7. Подтянуть крепления турбокомпрессора.

ВТОРОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (TO-2)

- 1. Выполнить все операции ТО-1.
- 2. Заменить масло в системе смазки двигателя.
- 3. Заменить фильтрующий элемент масляного фильтра. <u>При</u> свечении сигнализатора на прогретом двигателе элемент необходимо заменить не дожидаясь очередного технического обслуживания.
- 4. Промыть фильтр грубой очистки топлива на двигателях ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2, их комплектациях.
- 5. Заменить сменный фильтр для топлива фильтра тонкой очистки. При потере мощности двигателя фильтрующий элемент необходимо заменить не дожидаясь проведения очередного технического обслуживания.
- 6. При первом TO-2 проверить момент затяжки гаек шпилек крепления головок цилиндров и, при необходимости, подтянуть их.
- 7. Проверить и, при необходимости, отрегулировать тепловые зазоры в приводе клапанов.
 - 8. Выполнить пункты 2 7 раздела ЧЕРЕЗ ОДНО ТО-1.
- 9. Снять форсунки с двигателя и провести их техническое обслуживание.
- 10. Снять для проверки топливный насос высокого давление, при необходимости, произвести его подрегулировку. Первую проверку насоса выполнить по окончании гарантийного срока.
- 11. Проверить наличие масла в муфте опережения впрыскивания топлива и, при необходимости, долить на двигателях ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БЕ, ЯМЗ-238ДЕ, их комплектациях.
- 12. Провести техническое обслуживание воздушного фильтра и впускного тракта (см. разделы «Обслуживание воздушного фильтра» и «Проверка герметичности впускного тракта»). <u>При наличии индикатора засоренности воздушного фильтра обслуживание выполнять по сигналу индикатора.</u>
- 13. Наполнить смазкой полость подшипников натяжного устройства привода компрессора.
- 14. Провести техническое обслуживание генератора (см. раздел «Техническое обслуживание электрооборудования»).
- 15. Смазать муфту выключения сцепления с подшипником и валик вилки выключения сцепления (см. раздел «Сцепление»).

- 16. Провести техническое обслуживание коробки передач (см. раздел «Коробка передач»).
- 17. Через каждые 3000 часов работы проверить легкость вращения, осевой и радиальный люфты ротора турбокомпрессора, при необходимости, провести его техническое обслуживание.
- 18. Через каждые 3000 часов работы заменить масло в муфте опережения впрыскивания топлива на двигателях ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238ДЕ, их комплектациях.
- 19. Через каждые 3500 часов работы снять стартер с двигателя и провести его техническое обслуживание (см. раздел «Техническое обслуживание электрооборудования»).

СЕЗОННОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 1. Если двигатель работает на сезонных маслах, необходимо заменить масло на соответствующее предстоящему сезону.
- 2. Заменить топливо на соответствующие предстоящему сезону, топливный бак рекомендуется ополоснуть чистым топливом.
- 3. Осенью, при переходе на зимнюю эксплуатацию, проверить узлы электрофакельного устройства и промыть фильтр-отстойник топлива.
- 4. Осенью, при переходе на зимнюю эксплуатацию и в случае использования в качестве охлаждающей жидкости воды, промыть систему охлаждения.
- 5. Осенью, при переходе на зимнюю эксплуатацию и в случае использования в качестве охлаждающей жидкости воды, необходимо отвернуть резьбовую пробку на отводящем патрубке жидкостно-масляного теплообменника и слить воду с целью исключения его размораживания.

ВНИМАНИЕ! ПЕРИОДИЧНОСТЬ СМЕНЫ МАСЛА НА ДВИГАТЕЛЯХ, СООТВЕТСТВУЮЩИХ ТРЕБОВАНИЯМ ЕВРО-2, ЧЕРЕЗ КАЖДЫЕ 1000 ЧАСОВ ПРИ ИСПОЛЬЗОВАНИИ ТОЛЬКО ВСЕСЕЗОННЫХ МОТОРНЫХ МАСЕЛ (МАСЛА ГРУППЫ ЯМЗ-4-02). ПЕРИОДИЧНОСТЬ СМЕНЫ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ ОЧИСТКИ МАСЛА НА ДВИГАТЕЛЯХ, СООТВЕТСТВУЮЩИХ ТРЕБОВАНИЯМ ЕВРО-2, ЧЕРЕЗ КАЖДЫЕ 1000 ЧАСОВ ПРИ УСЛОВИИ ПРИМЕНЕНИЯ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ ИЗ СИНТЕТИЧЕСКОГО ИГЛОПРОБИВНОГО МАТЕРИАЛА 840-1012039(40)-14, -15. ПРИ ИСПОЛЬЗОВАНИИ В МАСЛЯНОМ ФИЛЬТРЕ НА УКАЗАННЫХ ДВИГАТЕЛЯХ БУМАЖНЫХ ФИЛЬТРУЮЩИХ ЭЛЕМЕНТОВ ПЕРИОДИЧНОСТЬ СМЕНЫ ЭЛЕМЕНТОВ ЧЕРЕЗ КАЖДЫЕ 500 ЧАСОВ.

ПЕРЕВОД ПЕРИОДИЧНОСТИ ТО В ЧАСАХ НАРАБОТКИ ДВИГАТЕЛЯ К ПЕРИОДИЧНОСТИ ТО В КИЛОМЕТРАХ ПРОБЕГА АВТОМОБИЛЯ

Для каждой модели двигателя ЯМЗ на основании средней величины технической и эксплуатационной скоростей для одной модели автомобилей, эксплуатирующихся в автотранспортном предприятии, принимается расчетная средняя скорость, которая и является величиной для перевода периодичности ТО в часах наработки двигателя к периодичности ТО в километрах пробега автомобиля.

Для автотранспортных предприятий, эксплуатирующих автомобили с двигателями, силовыми агрегатами ЯМЗ, рекомендуется, исходя из опыта подконтрольной эксплуатации, расчет средней скорости одной модели автомобиля производить по формуле:

$$V_{cp} = (V_3 + V_T)/2$$
, где $V_3 -$ средняя эксплуатационная скорость автомобиля; $V_T -$ средняя техническая скорость автомобиля.

Например, при $V_{_{3}}=40$ км/час и $V_{_{T}}=60$ км/час автомобиля, $V_{cp}=(40+60)/2=50$ км/час, при этом замена масла в двигателе ЯМЗ, соответствующего требованиям экологических нормативов Евро-2, должна выполняться при ТО-2 через 50000 км пробега:

1000 часов x 50 км/час = 50000 км.

РЕГУЛИРОВКА ДВИГАТЕЛЯ

РЕГУЛИРОВКА НАТЯЖЕНИЯ КЛИНОВЫХ РЕМНЕЙ

Привод водяного насоса, компрессора и генератора осуществляется клиновыми ремнями, от надежной работы которых зависит нормальная работа этих агрегатов. Поэтому при повседневном уходе за двигателями необходимо предохранять ремни от попадания масла и топлива, контролировать их натяжение и регулировать его. Особенно тщательно проверять натяжение ремней в течение первых 50 часов работы двигателя, так как в это время происходит их наибольшая вытяжка. Натяжение ремней должно быть всегда нормальным, поскольку как излишнее, так и недостаточное натяжение приводит к преждевременному выходу их из строя. Кроме того, чрезмерное натяжение ремня привода водяного насоса может послужить причиной разрушения подшипников насоса.

Нормально натянутый ремень привода водяного насоса при нажатии на середину длинной ветви с усилием 40 Н (4 кгс) прогибается на 10...15 мм (рис. 51), а ремень компрессора — на 4...8 мм на короткой ветви (рис. 52) . Натяжение ремней привода генератора проверять нажатием с усилием 40 Н (4 кгс) на середину ветви каждого ремня (рис. 53), при этом ремни привода генератора должны прогибаться на 10...15 мм. Если ремни прогибаются больше или меньше указанного, отрегулировать их натяжение.

Натяжение ремня привода водяного насоса (рис. 51) регулировать натяжным устройством, для чего:

- ослабить болты крепления рычага кронштейна натяжного приспособления;
- 2. при помощи воротка Ø12 мм, вставленного в отверстие рычага кронштейна натяжного приспособления, произвести натяжение ремня;
- 3. не ослабляя усилие натяжения затянуть болты крепления рычага кронштейна натяжного приспособления;
- 4. проверить натяжение ремня.

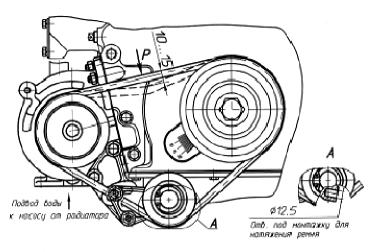


Рис. 51. Проверка натяжения ремня привода водяного насоса

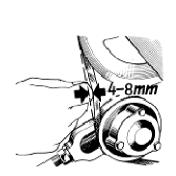


Рис. 52. Проверка натяжения ремня привода компрессора

Рис. 53. Проверка натяжения ремня привода генератора

Натяжение ремня привода компрессора регулировать натяжным устройством (рис. 52). Перед регулировкой отвернуть контргайку 2 на один оборот и гайку 1 - на полоборота. После чего, вращая болт-натяжитель 18 отрегулировать натяжение ремня (рис. 52a). После регулировки затянуть гайку 1 и контргайку 2 моментом 120...150 $H\cdot м$.

ВНИМАНИЕ! РЕГУЛИРОВКУ НАТЯЖЕНИЯ РЕМНЯ (УСИЛЕНИЕ ИЛИ ОСЛАБЛЕНИЕ) НЕОБХОДИМО ПРОИЗВОДИТЬ ТОЛЬКО ПОСЛЕ ОТВОРАЧИВАНИЯ ГАЕК 1 И 2, ЧТОБЫ ИСКЛЮЧИТЬ ПОЛОМКУ НАТЯЖНОГО УСТРОЙСТВА КОМПРЕССОРА

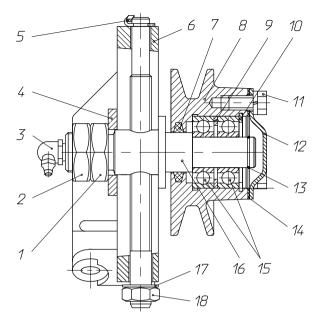


Рис. 52а. Натяжное устройство компрессора:

1 - гайка М22; 2 - контргайка М22; 3 - масленка; 4 - шайба оси вентилятора; 5 - шайба замковая; 6 - кронштейн натяжного устройства; 7 - кольцо СТ 32; 8 - шкив натяжного устройства; 9 - кольцо распорное; 10 - кольцо пружинное; 11 - болт М8; 12 - крышка шкива; 13 - кольцо стопорное; 14 - прокладка крышки; 15 - подшипники 203А или 6-203А; 16 - ось шкива; 17- шайба 12; 18 - болт - натяжитель

В процессе эксплуатации предусматривается наполнение смазкой через масленку 3 полости подшипников натяжного устройства при ТО-2 через каждые 1000 часов работы двигателя (см. раздел «Техническое обслуживание»).

Натяжение ремня привода генератора регулировать перемещением генератора относительно оси его крепления. Перед регулировкой ослабить затяжку болтов крепления генератора, гайку крепления планки генератора и болт крепления генератора к планке. После регулировки надежно закрепить генератор. При увеличенной вытяжке и обрыве хотя бы одного из ремней привода генератора заменить комплектом оба ремня для обеспечения равномерной нагрузки на них.

РЕГУЛИРОВКА НАТЯЖЕНИЯ ПОЛИКЛИНОВОГО РЕМНЯ ПРИВОДА ГЕНЕРАТОРА

Привод генератора осуществляется поликлиновым ремнем на двигателях ЯМЗ, которые комплектуются вентилятором с вязкостной муфтой или приводом вентилятора с упругой муфтой.

Для обеспечения безотказной работы ремня необходимо предохранять его от попадания топлива и масла.

При техническом обслуживании двигателя контролировать и, при необходимости, регулировать его натяжение (см. раздел «Техническое обслуживание» настоящего руководства).

Особенно тщательно проверять натяжение ремня в течение первых 50 часов работы двигателя, так как в этот период происходит его наибольшая вытяжка.

Натяжение ремня привода генератора проверять нажатием на середину ветви ремня с усилием $90 \pm 0,45 \; \mathrm{H}$ (9,2 ± 0,4 кгс), при этом величина прогиба ветви ремня должна быть $14...15 \; \mathrm{mm}$ (см. рисунок 53a).

Если ремень прогибается больше или меньше указанного, отрегулировать его натяжение. Слабое или тугое натяжение приводит к преждевременному выходу ремня из строя. При увеличенной вытяжке или обрыве ремень заменить на новый.

Натяжение ремня 3 привода генератора (см. рисунок 53а) регулировать перемещением генератора 6 относительно оси его крепления. Перед регулировкой ослабить затяжку болтов 4, 7 крепления генератора и гайки 10 пальца 8, болта 5 крепления генератора к планке 1 и гайки 9 крепления планки к верхней крышке блока.

Генератор после регулировки ремня надежно закрепить.

Затяжку деталей крепления генератора производить моментом:

- болтов 5, 7 и гайки 9 11,76...17,65 Н⋅м (1,2...1,8 кгс⋅м);
- болта 4 и гайки 10 23,53...35,30 Н⋅м (2,4...3,6 кгс⋅м).

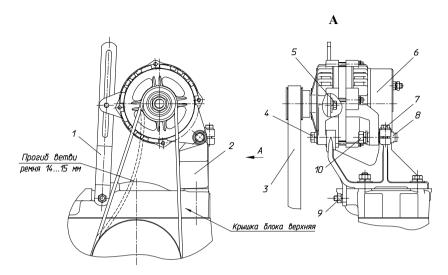


Рис. 53a. Регулировка натяжения поликлинового ремня привода генератора:

1 - планка; 2 - кронштейн крепления генератора; 3 - ремень поликлиновой 6РК-860; 4 - болт M10-6gx35; 5 - болт M8-6gx20; 6 - генератор; 7 - болт M8-6gx25; 8 - палец крепления генератора; 9 - гайка M8-6H; 10 - гайка M10-6H.

ПОДТЯЖКА КРЕПЛЕНИЯ ГОЛОВКИ ЦИЛИНДРОВ

Проверить момент затяжки гаек шпилек крепления головок цилиндров тарированным ключом в холодном состоянии двигателя и, при необходимости, подтянуть их до момента 235...255 Н'м (24...26 кгс'м). Затяжку гаек производить в последовательности, показанной на рис. 54, в порядке возрастания номеров.

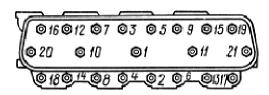


Рис. 54. Порядок затяжки гаек крепления головок цилиндров:

ВНИМАНИЕ! КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ЗАТЯГИВАТЬ ГАЙКИ МОМЕНТОМ БОЛЬШИМ, ЧЕМ УКАЗАНО, ТАК КАК ЭТО ПРИВЕДЕТ К ОБРЫВУ ШПИЛЕК И ПОЛОМКАМ ГОЛОВОК ЦИЛИН-ДРОВ, А ГЕРМЕТИЧНОСТЬ СОЕДИНЕНИЯ ЭТИМ НЕ ВОССТАНОВИТСЯ. ПРИ УСТАНОВКЕ ГОЛОВКИ ЦИЛИНДРОВ НА ДВИГАТЕЛЬ ИЛИ ЗНАЧИТЕЛЬНЫМ ОСЛАБЛЕНИЕМ ЗАТЯЖКИ ЗАТЯГИВАТЬ ГАЙКИ НЕ МЕНЕЕ ЧЕМ ЗА ТРИ ПРИЕМА (СМ. РАЗДЕЛ «ТЕКУЩИЙ РЕМОНТ ДВИГАТЕЛЕЙ»)

После подтяжки гаек крепления головок цилиндров отрегулировать тепловые зазоры в клапанном механизме и установить крышки головок цилиндров.

РЕГУЛИРОВКА ЗАЗОРОВ В КЛАПАННОМ МЕХАНИЗМЕ

Тепловые зазоры в клапанном механизме предназначены для обеспечения герметичной посадки клапана на седло при расширении деталей привода клапанов во время работы двигателя. Величина теплового зазора у впускного и выпускного клапанов устанавливается одинаковой и регулируется в пределах 0,25...0,30 мм. При повторной проверке зазоров после прокрутки коленчатого вала отрегулированного двигателя возможно изменение их до пределов 0,20...0,35 мм из-за погрешности формы и расположения поверхностей деталей газораспределительного механизма, что является допустимым.

При слишком больших тепловых зазорах уменьшается высота подъема клапанов, вследствие чего ухудшаются наполнение и очистка цилиндров, растут ударные нагрузки и увеличивается износ деталей газораспределительного механизма. При очень малых зазорах в результате теплового расширения деталей газораспределительного механизма не обеспечивается плотное прилегание клапанов к седлам, нарушаются газодинамические процессы в цилиндрах двигателя, ухудшаются мощностные и технико-экономические показатели двигателя.

Кроме того, уменьшение зазора в приводе выпускных клапанов может привести к перегреву клапанов и их прогару.

Тепловые зазоры регулировать на холодном двигателе или не ранее, чем через 1 час после его остановки.

При регулировке тепловых зазоров и повторной их проверке коромысла клапанов рекомендуется прижать:

- на головке правого ряда цилиндров коромысла выпускных клапанов к торцу оси, впускных клапанов к упорной шайбе;
- на головке левого ряда цилиндров коромысла выпускных клапанов к упорной шайбе, впускных клапанов к торцу оси.

Выпускные клапаны правого ряда цилиндров расположены ближе к вентилятору, левого ряда цилиндров – к маховику.

Последовательность регулировки:

- 1. Выключить подачу топлива.
- 2. Отвернуть болты крепления крышек головок цилиндров и снять крышки.
- 3. Проверить момент затяжки болтов крепления осей коромысел, который должен быть 120...150 Н·м (12...15 кгс·м).
- 4. Проворачивая коленчатый вал по часовой стрелке (при виде со стороны вентилятора) спереди ключом за болт крепления шкива или сзади воротком за маховик через люк в нижней части картера маховика, используя отверстия в маховике (рис. 55), установить момент, когда впускной клапан первого цилиндра полностью поднимется (то есть закроется). Продолжая вращать коленчатый вал, провернуть его еще примерно на 1/3 оборота (≈120°). Это положение коленчатого вала соответствует такту сжатия в первом цилиндре и оба клапана этого цилиндра будут закрыты.

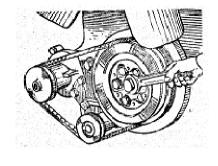
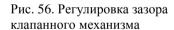



Рис. 55. Проворачивание коленчатого вала

5. Проверить щупом зазор между торцом клапана и носком коромысла у впускного и выпускного клапанов первого цилиндра и, при необходимости, отрегулировать.

6. Для регулировки зазоров отвернуть гайку регулировочного винта, вставить в зазор щуп и, вращая винт отверткой (рис. 56), установить зазор 0,25...0,30 мм. Придерживая винт отверткой, затянуть гайку и проверить величину зазора. При правильно отрегулированном зазоре щуп

- толщиной 0,25 мм должен входить при легком нажиме, толщиной 0,30 мм с усилием.
- 7. Для регулировки зазоров клапанного механизма остальных цилиндров провертывать коленчатый вал в том же направлении до полного закрытия впускного клапана регулируемого цилиндра и дополнительно еще на 1/3 оборота. Зазоры регулировать как указано выше (см. п. 6).
 - Регулировку зазоров по цилиндрам рекомендуется проводить в соответствии с порядком их работы. Порядок работы двигателя по цилиндрам и схема нумерации цилиндров приведена в разделе «Техническая характеристика».
- 8. После окончания регулировки зазоров запустить двигатель и прослушать его работу. Стуков в клапанном механизме не должно быть. В случае наличия характерного стука клапанов остановить двигатель и регулировку зазоров повторить.
- 9. Поставить и закрепить крышки головок цилиндров, проверить состояние прокладок. В месте прилегания крышек масло не должно подтекать.

ПРОВЕРКА И РЕГУЛИРОВКА УГЛА ОПЕРЕЖЕНИЯ ВПРЫСКИВАНИЯ ТОПЛИВА

Для регулировки угла опережения впрыскивания топлива на картере маховика предусмотрены два люка (см. рис. 57), а на маховике в двух местах нанесены значения углов. Для нижнего указателя 3 эти значения выполнены на маховике в цифровом выражении, а для бокового указателя 4 – в буквенном выражении, при этом, букве "A" соответствует значение в цифровом выражении 20°; букве "Б"-15°; букве "B"-10°; букве "Г"-5°.

Вращать коленчатый вал двигателя по часовой стрелке (если смотреть со стороны вентилятора) до совмещения меток на шкиве коленчатого вала и крышке шестерен распределения или на маховике с указателем, соответствующих установочному углу опережения впрыскивания топлива — 6°...7°. При этом клапаны в 1-ом цилиндре должны быть закрыты.

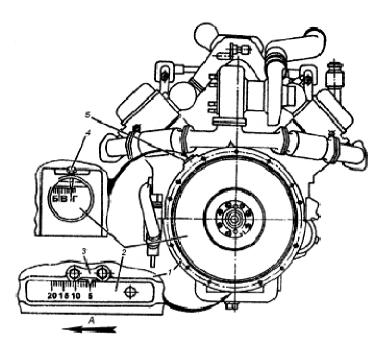


Рис. 57. Совмещение рисок на маховике с указателями картера маховика:

1 — картер маховика; 2 — маховик; 3, 4 — указатели картера маховика; 5 — пробка верхнего люка; A — направление вращения коленчатого вала

Вращать коленчатый вал можно ключом за болт крепления шкива коленчатого вала или ломиком за отверстия в маховике (рис. 55) при снятой крышке люка картера маховика.

В момент совмещения меток должны совместиться метка «А» на торце муфты с острием указателя (рис. 58) или с риской «Б» на указателе (рис. 59). Если метки не совместились необходимо произвести регулировку.

Порядок регулировки угла опережения впрыскивания топлива двигателей ЯМЗ-238БЕ2 и ЯМЗ-238ДЕ2 (рис. 58):

- ослабить затяжку болта 2 клеммового соединения: фланец 3 – ведущая полумуфта 1;
- поворотом демпферной муфты совместить метку на муфте с острием указателя 8;

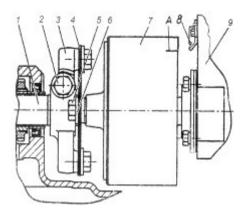


Рис. 58. Привод топливного насоса высокого давления двигателей ЯМЗ-238БЕ2 и ЯМЗ-238ДЕ2:

- 1 ведущая полумуфта; 2 болт клеммового соединения; 3 фланец полумуфты; 4 пластины привода; 5 болты крепления пластин привода; 6 шайбы; 7 демпферная муфта; 8 указатель; 9 топливный насос высокого давления; А метка на демпферной муфте.
- не сбивая совмещенного положения меток, затянуть болт клеммового соединения моментом 16...18 кгс-м. При этом отклонение пакета пластин от положения в одной плоскости должно быть в пределах ±1 мм. Замер производить вблизи мест крепления пластин. В случае их гофр на пластинах 4. vстранение появления производится путем поочередного ослабления последующей затяжки моментом 11...12,5 кгс-м четырех болтов 5 крепления пластин к фланцу полумуфты и к демпферной муфте;
- проверить правильность установки угла опережения впрыскивания.

Порядок регулировки угла опережения впрыскивания топлива двигателей ЯМЗ-238БЕ, Б, ЯМЗ-238ДЕ, Д (рис. 59):

- проверить плотность посадки полумуфты 3 на валу привода 1 и затяжку клеммового болта 5 (момент затяжки 43,2...58,9 H·м (4,4...6 кгс·м));
- отвернуть (ослабить) два болта 4 и поворотом муфты опережения за счет овальных отверстий на фланце полумуфты совместить метки «А» и «Б»;

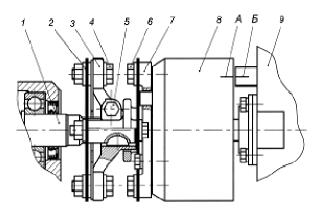


Рис. 59. Привод топливного насоса высокого давления двигателей ЯМЗ-238БЕ, ЯМЗ-238Б, ЯМЗ-238ДЕ, ЯМЗ-238Д:

1 — вал привода; 2 — пластины привода; 3 — ведущая полумуфта; 4 — болты; 5 — болт клеммового соединения; 6 — болты; 7 — полумуфта ведомая; 8 — муфта опережения впрыскивания топлива; 9 — топливный насос высокого давления; A — метка на муфте; B — метка на указателе

- не сбивая совмещенного положения меток, затянуть болты 4 привода моментом затяжки 43,2...58,9 Н·м (4,4...6 кгс·м). При этом отклонение пакета пластин от положения в одной плоскости должно быть в пределах ±1 мм. Замер производить вблизи мест крепления пластин:
- провернув коленчатый вал, проверить правильность установки угла опережения впрыскивания. Несовпадение рисок должно быть не более одного деления или 1° поворота коленчатого вала.

ВНИМАНИЕ! ВО ИЗБЕЖАНИЕ ПОЛОМКИ ПЛАСТИН ПРИВОДА ТНВД НЕ ДОПУСКАТЬ РАБОТУ ДВИГАТЕЛЯ С ДЕФОРМИРОВАННЫМ ПАКЕТОМ ПЛАСТИН

При ТО-2 проверить наличие масла в муфте опережения впрыскивания топлива двигателей ЯМЗ-238БЕ, ЯМЗ-238Б, ЯМЗ-238ДЕ, ЯМЗ-238Д, их комплектациях и, при необходимости, долить масло. Для контроля установить муфту отверстиями в верхнее положение и вывернуть пробки. При медленном повороте муфты на 70° из одного отверстия должно начать вытекать масло. После доливки масла пробки завернуть.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ СМАЗКИ

Срок службы двигателя зависит от своевременного и тщательного проведения смазки, а также от сорта и качества применяемых масел и смазок. Во избежание проникновения грязи в механизмы тщательно очищать места смазки и простирать масленки. Места двигателя, требующие периодического добавления или замены смазки, указаны в «Таблице смазки»

ПРОВЕРКА УРОВНЯ МАСЛА

Уровень масла контролировать по меткам указателя уровня масла. не раньше, чем через пять минут после остановки двигателя, установив машину на ровной горизонтальной площадке. Для контроля отвернуть указатель с резьбовой части трубки, протереть его стержень чистой ветошью и вставить в трубку, не ввертывая, после чего вторично вынуть указатель (рис. 60) и проверить уровень масла. Уровень масла должен находиться между верхней «В» и нижней «Н» метками. Если уровень масла находится близко к метке «Н», долить до метки «В» свежее масло той же марки. Не доливать масло выше верхней метки. Излишки масла следует слить или откачать из картера.

Масло заливать в двигатель через горловину на крышке головки цилиндров. Перед заливкой очистить горловину от пыли и грязи. Заливать масло из маслораздаточных колонок дозировочными пистолетами, а при отсутствии колонок — через воронку с сеткой из чистой заправочной посуды. Закрыть крышку горловины.

Рис. 60. Проверка уровня масла в картере двигателя:

> указатель уровня масла.

ТАБЛИЦА СМАЗКИ

	TABILITY CITASKII						
№ п/п	Место смазки	Наименование смазочных материалов	Коли- чество точек смазки	Указание о выполнении работ	Периодич- ность в часах работы		
1.	Маслозалив- ная горловина, масляный кар- тер двигателя	Моторное масло (см. раздел «Эксплуатационные материалы»)	1	Проверить уровень масла, при необходи- мости, долить	Ежедневно		
				Заменить масло	См. раздел «Техничес- кое обслу- живание»		
2.	Коробка передач	Трансмиссионное масло (см. раздел «Эксплуатационные материалы»)	1	Заменить масло	См. раздел «Техничес- кое обслу- живание»		
3.	Муфта опережения впрыскивания	Масло, применяемое для двигателя	1	Проверить уровень масла, при необходимости, долить Заменить	3000		
4.	Подшипники шкива натяжного устройства компрессора	Литол-24, ЦИАТИМ-201	1	масло Заполнить смазкой через пресс- масленку	1000		
5.	Подшипники стартера	Масло, применяемое для двигателя	3	Залить в подшипники по 10 капель масла	3500		
6.	Привод стартера	Масло, применяемое для двигателя	1	Залить масло в корпус привода	3500		
7.	Шлицевая часть вала якоря стартера	Лита, ЦИАТИМ-201	1	Смазать вал якоря	3500		
8.	Подшипники вала вилки выключения сцепления	ШРУС-4 ТУ 0254-001- 05766076-98 ШРУС-4М	2	Заполнить смазкой через пресс-масленку	См. раздел «Техничес- кое обслу- живание»		
9.	Муфта выключения сцепления	ТУ 38401-58- 128-95	1	Заполнить смазкой через пресс-масленку	См. раздел «Техничес- кое обслу- живание»		

СМЕНА МАСЛА

Для удаления из картера вместе с маслом отложений сливать масло из прогретого двигателя, соблюдая меры безопасности. Для слива масла отвернуть сливную пробку на картере и снять крышку маслозаливной горловины, предварительно очистив ее от пыли и грязи. После полного слива масла пробку завернуть.

Масло заливать в двигатель через горловину на крышке головки цилиндров. Перед заливкой очистить горловину от пыли и грязи, проверить затяжку сливной пробки масляного картера: момент затяжки 140...160 Н·м (14...16 кгс·м). Заливать масло из маслораздаточных колонок дозировочными пистолетами, а при отсутствии колонок — через воронку с сеткой из чистой заправочной посуды. Закрыть крышку горловины.

ОБСЛУЖИВАНИЕ МАСЛЯНОГО ФИЛЬТРА

1. Отвернуть на 3 – 4 оборота колпак фильтра и слить масло через канал корпуса в подставленную тару. Для отвертывания колпака можно пользоваться ключом, как показано на рис. 61.

Рис. 61. Отвертывание колпака фильтра

- 2. Отвернуть полностью и снять колпак 5 (рис. 62) фильтра.
- 3. Нажать на замковую крышку 3 и, утопив ее в колпак 5 на 2-3 мм, повернуть на 45° , после чего она выйдет из зацепления с фланцем колпака. Извлечь из колпака замковую крышку и фильтрующий элемент 4.

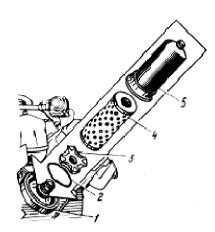


Рис. 62. Масляный фильтр: 1 — корпус; 2 — прокладка; 3 — замковая крышка; 4 — фильтрующий элемент; 5 — колпак

- 4. Промыть внутреннюю полость колпака дизельным топливом. **Не допускается очистка даже чистой ветопью.**
- 5. Установить в колпак новый. фильтрующий элемент резиновой прокладкой наружу. В отверстие прокладки установить замковую крышку, обеспечив правильное положение прокладки. Нажав на замковую крышку, утопить ее вместе с элементом в колпак и повернуть на 45°. В пазы крышки войдут выступы фланца колпака, после чего пружина отожмет крышку в рабочее положение.
- 6. Навернуть колпак с элементом на штуцер корпуса 1 и затянуть моментом 20...40 H·м (2...4 кгс·м).
- 7. На работающем двигателе убедиться в отсутствии течи масла через уплотнение колпака. Через четыре замены фильтрующего элемента заменить уплотнительную прокладку 2.

ПРОМЫВКА ФИЛЬТРА ЦЕНТРОБЕЖНОЙ ОЧИСТКИ МАСЛА

- 1. Отвернуть гайку колпака фильтра (рис. 63) и снять колпак.
- 2. Отвернуть гайку крепления ротора; снять ротор с упорной шайбой 9 (рис. 64).

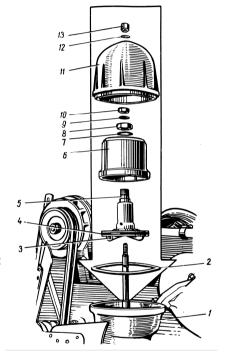



Рис. 63. Отвертывание гайки колпака

Рис. 64. Фильтр центробежной очистки масла:

1 — корпус; 2 — прокладка колпака; 3 — сопло ротора; 4 прокладка ротора; 5 — ротор; 6 колпак; 7 — шайба; 8 — гайка ротора; 9 — упорная шайба; 10 гайка крепления ротора; 11 колпак; 12 — шайба; 13 — гайка крепления колпака

- 3. Разобрать ротор, для чего отвернуть гайку 8, снять шайбу 7 и колпак 6 ротора.
- 4. Удалить из колпака 6 и с ротора 5 отложения и промыть их в лизельном топливе.

5. Собрать фильтр в обратной последовательности, проверив состояние прокладок 2 и 4, сопел 3 ротора и шайбы 12. При необходимости, прокладки заменить, а сопла ротора прочистить.

СНЯТИЕ И ПРОМЫВКА КЛАПАНОВ СИСТЕМЫ СМАЗКИ

При возможном заедании редукционного клапана или дифференциального клапана системы смазки их необходимо снять, отвернув болты крепления. Клапаны промыть в дизельном топливе, не разбирая, и установить на место.

При неисправностях (поломка пружины и др.) заменить клапан в сборе.

СМАЗКА ПОДШИПНИКОВ ШКИВА НАТЯЖНОГО УСТРОЙСТВА КОМПРЕССОРА

В процессе эксплуатации полость подшипников шкива натяжного устройства компрессора регулярно наполнять смазкой при ТО-2 через каждые 1000 часов работы двигателя (см. раздел «Техническое обслуживание» и таблицу смазки).

Смазку нагнетать механическим или ручным солидолонагнетателем через пресс-масленку (рис. 65), находящуюся на оси шкива со стороны блока цилиндров, до начала появления смазки через сальник на заднем торце шкива (4-5 ходов при заполнении ручными шприцем).

Один раз в год рекомендуется промывать подшипники натяжного устройства в указанной ниже последовательности:

- 1. Отвернуть гайку крепления оси шкива натяжного устройства и гайку болта-натяжителя.
- Вывернуть болт-натяжитель из оси шкива и снять шкив с осью.
- 3. Вывернуть три болта и снять крышку шкива.
- 4. Удалить из шкива старую смазку (не разбирая его) и промыть в керосине или дизельном топливе.

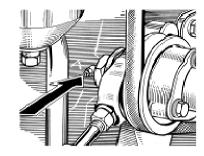


Рис. 65. Масленка шкива натяжного устройства

- Заложить смазку в подшипники и в полость крышки и установить крышку на место.
- 6. Установить шкив с осью на место, надеть ремень, отрегулировать натяжение ремня и затянуть гайку и контргайку крепления оси.
- 7. Заполнить смазкой через пресс-масленку полость подшипников до начала появления смазки через сальники на заднем конце шкива.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТОПЛИВНОЙ АППАРАТУРЫ

Своевременное и тщательное обслуживание топливной аппаратуры обеспечивает длительную и надежную работу ее узлов.

Для предупреждения коррозионного износа прецизионных деталей топливного насоса и форсунок следует своевременно сливать отстой из топливных фильтров грубой и тонкой очистки. Не допускать попадания воды в топливные баки. Особое внимание необходимо обратить на чистоту деталей и в, первую внутренних полостей топливопроводов очередь, После давления. отсоединения топливопроводов высокого нагнетательные штуцеры насосов высокого давления, подводящий штуцер форсунки, подводящие и отводящие отверстия топливоподкачивающего насоса, фильтров и концы топливопроводов защитить от попадания пыли и грязи чистыми пробками, заглушками или изоляционной лентой. Все детали перед сборкой тщательно очистить, и промыть в чистом бензине или дизельном Протирка деталей обтирочным топливе. материалом допускается.

При отсоединении топливопровода высокого давления от форсунки придерживать штуцер форсунки гаечным ключом во избежание его отвертывания и течи топлива. После отсоединения проверить надежность затяжки штуцера без снятия форсунки с двигателя.

Установку и крепление трубопроводов высокого давления и трубопровода дренажной системы к форсункам производить после установки форсунки и затяжки гайки скобы.

Топливопроводы низкого давления присоединяются пустотельми болтами или накидными гайками через наконечники, закрепленные на концах топливопроводов. Контактные поверхности уплотняются шайбами (см. раздел «Топливопроводы»).

ВНИМАНИЕ! УПЛОТНИТЕЛЬНЫЕ ШАЙБЫ ПОВТОРНО ИСПОЛЬЗОВАТЬ ЗАПРЕЩАЕТСЯ

С целью предотвращения "разноса" двигателя в зимний период эксплуатации категорически запрещается обливать топливный насос высокого давления перед пуском горячей водой.

В течение всего периода эксплуатации запрещается мойка топливного насоса водой под напором.

При остановке двигателя в зимний период эксплуатации скобу кулисы регулятора оставить в положении выключенной подачи.

ОБСЛУЖИВАНИЕ ФОРСУНОК

При обслуживании каждой форсунки провести проверку и регулировку в следующем порядке:

1. Каждую форсунку отрегулировать на давление начала впрыскивания:

Модель двигателя	Модель	Давление
модель двигателя	форсунки	начала впрыска
ЯМЗ-238БЕ2, ЯМЗ-238ДЕ2	267.1112010-01	26,5 ^{+0,8} МПа (270 ⁺⁸ кгс/см ²)
лиз-236dE2, лиз-236дE2	204.1112010-50.01	26,5 ^{+1,2} МПа (270 ⁺¹² кгс/см ²)
ЯМЗ-238БЕ, ЯМЗ-238Б, ЯМЗ-238ДЕ, ЯМЗ-238Д	261.1112010-13(12)	22,6 ^{+0,8} МПа (230 ⁺⁸ кгс/см ²)

Примечание: После длительной работы двигателя допускается снижение давления начала впрыскивания форсунок на 8%.

Регулировку рекомендуется производить на специальном стенде типа КИ-3333 (рис. 66), удовлетворяющем ГОСТ 10579-88.

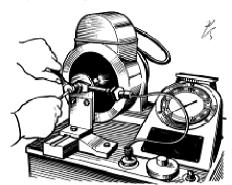


Рис. 66. Регулировка давления начала впрыскивания

Давление начала впрыскивания форсунок моделей 267-01, 261-13(12) регулируется винтом при снятом колпаке форсунки и отвернутой контргайке. При ввертывании винта давление повышается, при вывертывании - понижается.

Давление начала впрыскивания форсунки модели 204-50.01 регулируется с помощью регулировочных шайб. При увеличении их общей толщины давление повышается, при уменьшении - понижается.

- 2. Проверить герметичность распылителя по запирающему конусу иглы и отсутствие течей в местах уплотнений линии высокого давления. Для этого создать в форсунке давление топлива на 1...1,5 МПа (10...15 кгс/см²) ниже давления начала впрыскивания. При этом в течение 15 секунд не должно быть подтекания топлива из распыливающих отверстий; допускается увлажнение носика распылителя без отрыва топлива в виде капли. Герметичность в местах уплотнений линии высокого давления проверить при выдержке под давлением в течение 2 мин; на верхнем торце гайки распылителя (при установке форсунки под углом 15° к горизонтальной поверхности) не должно образовываться отрывающейся капли топлива.
- 3. Подвижность иглы проверить прокачкой топлива через форсунку, отрегулированную на заданное давление начала впрыскивания на опрессовочном стенде, при частоте впрыскивания 30-40 в минуту. Допускается подвижность иглы проверять одновременно с проверкой качества распыливания по п. 4.

4. Качество распыливания проверять на опрессовочном стенде прокачкой топлива через форсунку, отрегулированную на заданное давление начала впрыскивания при частоте 60-80 впрыскиваний в минуту.

Качество распыливания считается удовлетворительным, если топливо впрыскивается в атмосферу в туманообразном состоянии и равномерно распределяется как по всем струям, так и по поперечному сечению каждой струи. Начало и конец впрыскивания при этом должны быть четкими. После окончания впрыскивания допускается увлажнение носика распылителя без образования капли.

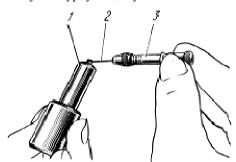
Впрыскивание топлива у новой форсунки сопровождается характерным резким звуком. Отсутствие резкого звука у бывших в эксплуатации форсунок не означает снижения качества их работы.

- 5. Герметичность уплотнения, соединения и наружных поверхностей полости низкого давления проверять опрессовкой воздухом давлением $0.45\pm0.05~\mathrm{M\Pi a}$ $(4.5\pm0.5~\mathrm{krc/cm^2})$. Пропуск воздуха в течении $10~\mathrm{секунд}$ не допускается при подводе воздуха со стороны носика распылителя.
- 6. Герметичность соединений «распылитель-гайка распылителя» проверять опрессовкой воздухом давлением $0.5\pm0.1~\mathrm{MHa}~(5\pm1~\mathrm{krc/cm^2})$ в течение $10~\mathrm{секунд}$ при подводе воздуха со стороны носика распылителя. Пропуск пузырьков воздуха по резьбе гайки распылителя при погружении ее в дизельное топливо не допускается.

При закоксовке или засорении одного или нескольких распыливающих отверстий распылителя форсунку разобрать, детали форсунки прочистить и тщательно промыть в профильтрованном дизельном топливе.

При не герметичности по запирающему конусу распылитель в сборе подлежит замене. Замена деталей в распылителе не допускается.

Разборку форсунки выполнять в следующей последовательности:


Форсунки моделей 267-01, 204-50.01, 261-13(12):

- 1. Отвернуть колпак форсунки.
- 2. Отвернуть контргайку и вывернуть до упора регулировочный винт.
- 3. Отвернуть гайку пружины на полтора два оборота.

- 4. Отвернуть гайку распылителя.
- Снять распылитель, предохранив иглу распылителя от выпаления.

Нагар с корпуса распылителя счищать металлической щеткой или шлифовальной шкуркой с зернистостью не грубее "М40". Распыливающие отверстия прочистить (рис. 67) стальной проволокой диаметром 0,3 мм. Применять для чистки внутренних полостей корпуса распылителя и поверхностей иглы твердые материалы и шлифовальную шкурку не допускается.

Рис. 67. Чистка распыливающих отверстий: 1 – распылитель; 2 – стальная проволока; 3 – зажимной патрон

Перед сборкой распылитель и иглу тщательно промыть в профильтрованном дизельном топливе. Игла должна легко перемещаться: выдвинутая из корпуса распылителя на одну треть длины направляющей, при наклоне распылителя на угол 45° от вертикали, игла должна плавно, без задержек полностью опускаться под действием собственного веса.

Сборку форсунки производить в последовательности обратной разборке. При затяжке гайки разверните распылитель против направления навинчивания гайки до упора в фиксирующие штифты и, придерживая его в этом положении, навернуть гайку рукой, после чего гайку окончательно затянуть.

Момент затяжки гайки распылителя 60...70~H·m (6...7~кгс·м), штуцера форсунки 80...100~H·m (8...10~кгс·м).

После сборки отрегулировать форсунку на давление начала впрыскивания и проверить качество распыливания топлива и четкость работы распылителя.

ВНИМАНИЕ! УСТАНОВКА ФОРСУНОК ИЛИ РАСПЫЛИТЕЛЕЙ, НЕСООТВЕТСТВУЮЩИХ ДАННОМУ ДВИГАТЕЛЮ, КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ. ШАЙБЫ ПОД ФОРСУНКИ ПОДЛЕЖАТ ЗАМЕНЕ, ПОВТОРНОЕ ИХ ИСПОЛЬЗОВАНИЕ ЗАПРЕЩАЕТСЯ

ОБСЛУЖИВАНИЕ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ МОДЕЛЕЙ 173.5-30, 173.6-20

Перед началом регулировки масляную полость насоса и регулятора промыть чистым дизельным топливом и заполнить свежим маслом, применяемым для двигателя, до уровня сливного отверстия. На время испытаний штуцер слива масла заглушить. Проверка и регулировка топливного насоса должна выполняться квалифицированным персоналом в условиях мастерской.

Перечень оборудования для контроля топливных насосов:

- стенды предприятия «Моторпал», «Хансман» или «КИ-15711» с мощностью привода не менее 11кВт:
- оборудование и приборы стендов должны удовлетворять требованиям ГОСТ 10758;
- весы среднего класса точности по ГОСТ 29329;
- приспособление для контроля подъема толкателя Т9590-27;
- приспособление для контроля начала действия регулятора Т9597-111.

Стенд должен быть оборудован дополнительной системой подвода фильтрованного масла к топливному насосу с регулированным давлением до 0,4 МПа (4 кгс/см 2) и системой подвода сжатого воздуха с устройством для плавного регулирования давления от 0 до 0,15 МПа (от 0 до 1,5 кгс/см 2).

Испытания насосов должны проводиться на профильтрованном дизельном топливе марки Л по ГОСТ 305-82 или калиброванной (технологической) жидкости, состоящей из его смеси с индустриальным маслом по ГОСТ 20799-88, авиационным маслом по ГОСТ 21743-76 или осветительным керосином по ТУ 38.401-58-10-90, имеющих вязкость 5-6 мм²/с (сСт) при температуре (20±5)°С.

Допускается применение смеси рабочих жидкостей, состоящих из 40% РЖ-3 ТУ 38.101.964 и 60% РЖ-8 ТУ 38.101.883, имеющих вязкость 5-6 мм²/с (сСт) при температуре $(20\pm5)^{\circ}$ С.

Температура топлива, измеряемая в выпускном соединении стенда с топливопроводом к испытываемому насосу при контроле величины и неравномерности цикловых подач должна быть (32±2)°С.

Перед установкой насоса на стенд проверить отсутствие осевого люфта кулачкового вала. При наличии люфта обеспечить натяг 0,01-0,07 мм, предварительно отрегулировав люфт кулачкового вала 0,03-0,09 мм установкой регулировочных прокладок, контролируемый усилием 90-100 Н (9-10 кгс), а затем убрать две прокладки толщиной по 0,05 мм.

При затянутых болтах крышки кулачковый вал должен свободно проворачиваться в подшипниках.

Проверку и регулировку топливного насоса следует проводить со стендовым комплектом форсунок модели 26-03C, имеющих эффективное проходное сечение $\mu f = 0.244 \text{ мм}^2$.

Допускается проверку и регулировку топливного насоса выполнять с рабочим комплектом форсунок. Каждая форсунка должна быть закреплена за соответствующей секцией топливного насоса и в дальнейшем устанавливаться в том цилиндре двигателя, который соединен с данной секцией.

Для стендового комплекта топливопроводов высокого давления следует применять трубки длиной 415±3 мм, разница в пропускной способности топливопроводов, составляющих стендовый комплект, не должна превышать 0,5 мм³/цикл.

Пропускную способность топливопровода определять на одной секции высокого давления, с одной форсункой и на одном пеногасителе стенда.

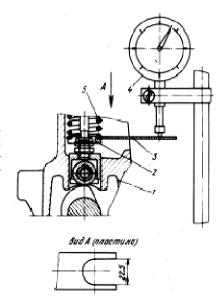
Перед проверкой и регулировкой нужно убедиться в герметичности системы низкого давления и масляной полости топливного насоса высокого давления, для чего:

Заглушить отверстие перепускного клапана, отводящее отверстие топливоподкачивающего насоса, штуцеры ТНВД ввертыш подвода масла корректора по наддуву, отверстие отбора топлива для электрофакельного устройства, установить крышку рейки.

К ввертышу слива масла в корпусе ТНВД герметично присоединить трубку с внутренним объемом не более 25 см³ (внутренний диаметр не более 8 мм). Свободный конец трубки опустить в сосуд с топливом на глубину не более 20 мм.

Подвести сжатый воздух к ввертышу подвода топлива ТНВД и к отверстию подвода топлива топливоподкачивающего насоса.

ТНВД считать годным, если при равномерном (в течение 10-20 с) повышении давления в системе от 0 до 0.5 МПа (от 0 до 5 кгс/см²) не наблюдается выделение пузырьков воздуха в сосуде с топливом.


Подвести сжатый воздух к ввертышу слива масла и погрузить ТНВД в емкость с дизельным топливом.

ТНВД считается герметичным, если при давлении 0,01-0,015 МПа $(0,1-0,15 \text{ кгс/см}^2)$ не наблюдается выделение пузырьков воздуха через соединения ТНВД в течение 20 с, кроме следующих соединений: стопорный винт рейки — корпус ТНВД, ось рычага корректора по наддуву — корпус мембраны.

При проверке топливного насоса контролируется:

- начало подачи топлива секциями насоса;
- величина и неравномерность подачи топлива.

Рис. 68. Прибор для проверки величины подъема толкателя: 1 — корпус топливного насоса высокого давления; 2 — нижняя тарелка пружины толкателя; 3 — пластина; 4 — индикатор; 5 — пружина толкателя

Начало подачи топлива секциями насоса определяется величиной подъема толкателя, углом поворота кулачкового вала насоса при вращении его по часовой стрелке, если смотреть со стороны привода, при положении рейки, соответствующем номинальной подаче, т.е. положении, при котором рейка выступает от торца насоса на величину (11±1) мм.

Начало подачи топлива первой секцией насоса должно соответствовать подъему толкателя 5,2±0,05 мм.

Величину подъема толкателя измерять индикатором (рис. 68).

В момент начала подачи топлива первой секцией риски на указателе начала нагнетания топлива и на гасителе крутильных колебаний должны совпадать. Несовпадение рисок не должно превышать 0.5° .

Секции насоса должны начинать подачу в следующем порядке (в градусах поворота кулачкового вала):

Секция № 1 – 0°	Секция № 4 – 180°
Секция № 3 – 45°	Секция № 5 – 225°
Секция № 6 – 90°	Секция № 7 – 270°
Секция № 2 – 135°	Секция № 8 – 315°

Отклонение углов кулачкового вала, соответствующих началу нагнетания топлива секциями насоса относительно геометрического начала нагнетания топлива первой секцией насоса, должно быть \pm 30 минут, не более.

Регулировка начала подачи топлива осуществляется прокладками, устанавливаемыми под фланцы корпуса секции, причем их количество и толщина должны быть одинаковыми с обеих сторон, а наиболее толстая прокладка должна быть сверху.

При увеличении толщины прокладок подача топлива начинается позже, при уменьшении – раньше.

Во избежание поломки насоса минимальная толщина прокладок не должна быть меньше 0,6 мм.

Проверку и регулировку величины и равномерности подачи топлива производить в следующем порядке:

1. Проверить давление начала открытия нагнетательных клапанов, которое должно быть 0.06 ± 0.04 МПа $(0.6\pm0.4~{\rm krc/cm^2})$. Контроль давления начала открытия нагнетательных клапанов производить по моменту начала истечения топлива из топливопровода с внутренним диаметром $(2\pm0.05)~{\rm mm}$ при

плавном повышении давления на входе в топливный насос и положении рейки, соответствующем выключенной подаче топлива.

- 2. Проверить давление топлива в магистрали на входе в топливный насос. Давление должно быть 0,175±0,025 МПа (1,75±0,25 кгс/см²) при номинальной частоте вращения кулачкового вала и упоре рычага управления в болт ограничения максимального скоростного режима. При необходимости вывернуть пробку перепускного клапана и шайбами отрегулировать давление открытия.
- 3. Проверить наличие запаса хода рейки. Под запасом хода рейки понимать свободный ход рейки (люфт) в сторону выключения подачи при 450-600 мин⁻¹ и при упоре рычага управления регулятором в болт ограничения минимальной частоты вращения. В случае отсутствия запаса хода рейки необходимо вывернуть до упора винт подрегулировки мощности и далее винтом кулисы отрегулировать запас хода рейки в пределах 1...1,3 мм и законтрить его.

ВНИМАНИЕ! ВЫСТУПАНИЕ ВИНТА КУЛИСЫ ЗА ВНЕШНИЙ ТОРЕЦ КРЫШКИ РЕГУЛЯТОРА НЕДОПУСТИМО.

- 4. Проверить начало выключения пусковой подачи топлива при 230-250 мин⁻¹ при упоре рычага управления в болт ограничения минимального скоростного режима по началу движения рейки. Если требуется увеличить обороты, снять зацеп пружины с рычага рейки и ввернуть его в пружину. Для уменьшения оборотов зацеп выворачивается. После этого поставить зацеп на рычаг рейки.
- 5. Проверить величину средней пусковой подачи топлива, которая должна быть в пределах 210-240 мм³/цикл при частоте вращения кулачкового вала насоса 80 ± 10 мин⁻¹. Регулируется болтом регулировки пусковой подачи 10 (рис. 20). При выворачивании болта из рейки пусковая подача уменьшается, при вворачивании увеличивается.
- 6. При упоре рычага управления в болт ограничения максимального скоростного режима проверить частоту вращения кулачкового вала насоса, соответствующую началу выброса рейки, определяемую по моменту начала движения рейки в сторону выключения подачи. Начало выброса рейки должно происходить при частоте вращения 1080-1100 мин⁻¹.

Подрегулировку производить болтом ограничения максимального скоростного режима.

7. Проверить частоту вращения, соответствующую концу выброса рейки, определяемую по моменту прекращения подачи топлива форсунками. Конец выключения должен происходить при частоте вращения на 60-120 мин⁻¹ больше частоты вращения начала выброса рейки.

Подрегулировку производить винтом двуплечего рычага. При ввертывании частота вращения конца выброса рейки уменьшается, при вывертывании — увеличивается. При этом изменяется и начало выключения, поэтому необходима его последующая проверка и подрегулировка по п. 6.

8. Проверить и при необходимости отрегулировать со стендовым комплектом форсунок модели 26-03С при упоре рычага управления регулятором в болт ограничения максимального скоростного режима среднюю цикловую подачу топлива, приращение средней цикловой подачи и неравномерность подачи топлива по секциям, которые должны быть:

Частота вращения кулачкового вала, мин ⁻¹	Средняя цикловая подача топлива секциями насоса, мм ³ /цикл	Неравномерность подачи топлива секциями насоса, % не более
1030±10	152 – 158	5
900±10	q - (2 - 8)	-
650±10	q – (5 – 11)	8
500±10	152 – 162	-

q - средняя цикловая подача топлива насосом на номинальном режиме.

При проверке насоса на контрольном стенде допускается дополнительное отклонение средней цикловой подачи $\pm 1\%$.

Величина средней цикловой подачи рассчитывается как сумма подачи всех секций, деленная на количество секций.

Неравномерность подачи топлива по секциям рассчитывается по формуле:

$$\delta = \frac{2 \cdot \left(\!q_{_{\mathrm{I\hspace{-.1em}I}}}^{\,max} - q_{_{\mathrm{I\hspace{-.1em}I\hspace{-.1em}I}}}^{\,min}\right)}{q_{_{\mathrm{I\hspace{-.1em}I\hspace{-.1em}I}}}^{\,max} + q_{_{\mathrm{I\hspace{-.1em}I\hspace{-.1em}I}}}^{\,min}} \cdot 100\,\%\,,$$
 где

- 8.1. Величину средней цикловой подачи на номинальном режиме подрегулировать винтом номинальной подачи: при вращении винта по часовой стрелке подача уменьшается, против часовой стрелки увеличивается. Регулировку равномерности цикловой подачи топлива каждой секцией насоса регулировать поворотом корпуса секции относительно корпуса насоса, предварительно ослабив гайки крепления фланца. При повороте секции по часовой стрелке цикловая подача увеличивается, против часовой стрелки уменьшается. После регулировки надежно затянуть гайки крепления фланца.
- 8.2. Приращение средней цикловой подачи при частоте вращения 800 мин⁻¹ подрегулировать корпусом отрицательного корректора. После регулировки корпус надежно законтрить.
- 8.3. Приращение средней цикловой подачи при частоте вращения 650 мин⁻¹, соответствующей максимальному крутящему моменту и 500 мин⁻¹ подрегулировать гайкой отрицательного корректора. При заворачивании гайки приращение подачи снижается, при выворачивании увеличивается. После регулировки гайку надежно законтрить.

Проверку топливных насосов по пунктам 1-8 производить при отсутствии давления воздуха и масла в корректоре по наддуву.

- 9. Проверить работу корректора подачи топлива по наддуву, для этого:
- 9.1. Промыть в чистом бензине сетчатый фильтр штуцера 15 (рис. 23) и тщательно продуть его сжатым воздухом.
- 9.2. Прочистить калибровочное отверстие в корпусе корректора мягкой проволокой диаметром (0,5-0,7) мм.
- 9.3. Проверить герметичность полости мембраны. Для этого к отверстию на крышке корпуса мембраны подвести воздух под давлением 0.06 ± 0.01 МПа $(0.6\pm0.1$ кГс/см²). При полностью перекрытом подводящем воздуховоде падение давления в

полости мембраны за время 2 мин не должно превышать 0,01 МПа $(0,1 \text{ кгс/см}^2)$.

9.4. При упоре рычага управления в болт ограничения максимального скоростного режима установить частоту вращения 650 мин⁻¹ и подвести к корректору масло под давлением 0,275±0,025 МПа (2,75±0,25 кгс/см²).

Для введения в работу корректора по наддуву одноразово выключить подачу топлива скобой кулисы, после чего перевести скобу в положение «подача выключена».

9.5. Проверить величину цикловых подач топлива при различных давлениях воздуха в полости мембраны, которые должны быть:

Средняя цикловая подача топлива секциями насоса, мм ³ /цикл при			
давлении воздуха в полости диафрагмы корректора, МПа (кГс/см ²)			
0,05-0,1 (0,5-1,0)	0,035±0,001 (0,35±0,01)	0 - 0.02 (0 - 0.2)	
$q - (5 - 11)^{*)}$	$(140 - 146)^{*)}$	$(132 - 138)^{*)}$	

q – средняя цикловая подача топлива насосом на номинальном режиме.

Цикловые подачи, помеченные знаком (*) должны быть обеспечены при давлении масла на входе в корректор $0.275\pm0.025~\rm M\Pi a~(2.75\pm0.25~\rm krc/cm^2)$. При понижении давления масла до $0.15~\rm M\Pi a~(1.5~\rm krc/cm^2)$ допускается изменение фактической цикловой подачи на $3~\rm km^3$ /цикл от заданных величин. При изменении давления воздуха на входе в корректор от $0.06~\rm M\Pi a~(0.6~\rm krc/cm^2)$ до $0.14~\rm M\Pi a~(1.4~\rm krc/cm^2)$ цикловая подача топлива должна быть постоянной и соответствовать значению, помеченному знаком (*) и изменение ее величины не должно превышать $\pm~2~\rm km^3$ /цикл.

Если замеренные величины цикловых подач отличаются от указанных, необходимо произвести подрегулировку корректора.

Регулировка величины цикловой подачи топлива при избыточном давлении воздуха на мембране, равном 0 МПа (кгс/см²), выполняется регулировочным болтом 21 (рис. 23). При ввертывании болта подача увеличивается, при вывертывании – уменьшается. После регулировки болт законтрить гайкой.

Величину цикловых подач топлива при промежуточных давлениях воздуха на мембране регулировать корпусом пружины 10 (рис. 23). При вворачивании корпуса пружины величина

топливоподачи уменьшается, при выворачивании – увеличивается. После регулировки корпус пружины законтрить гайкой.

Перед заменой изношенной мембраны (при необходимости) нужно замерить у мембраны со штоком в сборе величину выступания штока от нижнего торца гайки. После этого заменить мембрану и собрать ее со штоком с той же величиной выступания штока с точностью 0,1 мм, при этом западание торца золотника 12 относительно торца поршня 13 должно быть 0,2-0,9 мм при отсутствии зазора между торцем поршня и корпусом корректора.

При установке корректора по наддуву после демонтажа (если в этом была необходимость) на регулятор отвести скобой кулисы рейку насоса в крайнее выключенное положение и установить корректор по наддуву в корпус регулятора, после чего отпустить скобу.

Проверить регулировку корректора по наддуву на наличие выключения подачи топлива регулятором.

10. Винтом подрегулирвки мощности при упоре рычага управления в болт ограничения максимального скоростного режима произвести ограничение номинальных цикловых подач, которые должны быть:

Частота вращения кулачкового	Средняя цикловая подача топлива
вала насоса, мин-1	секциями насоса, мм ³ /цикл
1030±10	136 – 142

Винт подрегулировки мощности надежно законтрить.

Проверить запас хода рейки при упоре рычага управления регулятором в болт ограничения минимального скоростного режима и при частоте вращения кулачкового вала 500 мин⁻¹. Запас хода рейки должен быть 0,5 мм не менее.

11. Проверить выключение цикловой подачи скобой кулисы при повороте на 40-45° от исходного положения. Подача топлива из форсунок всех секций топливного насоса при любой частоте вращения и любом положении рычага управления регулятором должна полностью выключиться.

Установить крышки на топливный насос и регулятор и запломбировать их. Установить пломбу на болт регулировки максимальных оборотов.

Ha блоке цилиндров двигателя топливный насос устанавливать в вертикальном положении, болты крепления заворачивать равномерно, не допуская завала насоса. Окончательный момент затяжки болтов крепления насоса 30...40 Н м (3...4 кгс м). Подсоединение топливопроводов производить после закрепления топливного насоса.

ОБСЛУЖИВАНИЕ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ МОДЕЛЕЙ 806 И 807

Перед началом регулировки масляную полость насоса и регулятора промыть чистым дизельным топливом и заполнить свежим маслом, применяемым для двигателя, до уровня сливного отверстия. На время испытаний штуцер слива заглушить.

Топливные насосы высокого давления рекомендуется регулировать на стендах предприятия "Моторпал", фирмы "Фридман-Майер" и других стендах аналогичных конструкций.

Стенд для регулировки топливных насосов высокого давления должен быть оборудован:

- механизмом, обеспечивающим бесступенчатое изменение частоты вращения приводного вала в диапазоне от 0 до $1500~\mathrm{Muh}^{-1}$
- устройством для установки и закрепления испытуемого насоса в сборе с регулятором частоты вращения, муфтой опережения впрыскивания топлива и топливоподкачивающим насосом;
- топливным баком, фильтрами грубой и тонкой очистки топлива;
- топливной системой, обеспечивающей давление топлива у головки насоса до 2,3 МПа (23 кгс/см²);
- устройством для измерения и отбора порций топлива, подаваемого каждой секцией топливного насоса высокого давления;
- устройством для подогрева топлива и поддержания его температуры в диапазоне (32 \pm 2) °C;
- счетчиком, суммирующим количество ходов плунжера, сблокированным с устройством для измерения и отбора порций топлива;
 - тахометром для установки скоростного режима;

- лимбом для регулировки чередования подач между секциями насоса:
- маховиком на валу привода насоса с моментом инерции $0.17~{\rm kr}~{\rm m}^2~(1.7~{\rm krc}~{\rm m.c}^2);$
- необходимым количеством манометров, вакууметров и трубопроводов;
- дополнительной системой подвода фильтрованного масла к топливному насосу с регулируемым давлением до 0,4 МПа (4 кгс/см²) и системой подвода сжатого воздуха с устройством для плавного регулирования давления от 0 до 0,15 МПа (от 0 до 1,5 кгс/см²) .

Оборудование и приборы стендов должны удовлетворять требованиям ГОСТ 10578-95.

Для контроля топливных насосов высокого давления кроме стендов необходимо следующее оборудование:

- весы среднего класса точности по ГОСТ 29329-92;
- приспособление для контроля начала действия регулятора Т 9597-111;
- приспособление для контроля величины подъема толкателя Т 9590-36.

Испытания насосов должны проводиться на профильтрованном дизельном топливе марки Л по ГОСТ 305-82 или технологической жидкости, состоящей из его смеси с индустриальным маслом по ГОСТ 20799-88, авиационным маслом по ГОСТ 21743-76 или осветительным керосином по ТУ 38.401-58-10-90, имеющих вязкость от 5 до 6 мм²/с (сСт) при температуре (20±5) °C.

Допускается применение смеси рабочих жидкостей, состоящих из 40% РЖ-3 ТУ 38.101.964-83 и 60 % РЖ-8 ТУ 38.101.883-33, имеющих вязкость от 5 до 6 мм 2 /с (сСт) при температуре (20 \pm 5) °C.

Температура топлива, измеряемая в выпускном соединении стенда с топливопроводом к испытываемому насосу, при контроле величины и неравномерности цикловых подач должна быть (32 ± 2) °C.

Перед установкой насоса на стенд проверить осевой зазор кулачкового вала. Если зазор превышает 0,1 мм – отрегулировать его регулировочными прокладками в пределах от 0,01 до 0,07 мм.

При затянутых винтах крышки подшипника кулачковый вал должен свободно проворачиваться в подшипниках.

Проверку и регулировку топливного насоса следует проводить со стендовым комплектом форсунок модели 261-03С, имеющих эффективное проходное сечение $\mu f = 0.283 \text{ мм}^2$.

Допускается проверку и регулировку топливного насоса выполнить с рабочим комплектом форсунок. Каждая форсунка должна быть закреплена за соответствующей секцией топливного насоса и в дальнейшем устанавливаться в том цилиндре двигателя, который соединен с данной секцией.

Для стендового комплекта топливопроводов высокого давления следует применять трубки длиной (415±3) мм, разница в пропускной способности топливопроводов, составляющих стендовый комплект, не должна превышать 1 мм³/цикл.

Пропускную способность топливопровода определять на одной секции высокого давления, с одной форсункой и на одном пеногасителе стенда.

Отрегулированный топливный насос проверить на герметичность:

1. Дренажной полости, для чего к ввертышу слива масла герметично присоединить трубку внутренним объемом не более 50 см³ (внутренний диаметр не более 8 мм). Свободный конец трубки опустить в сосуд с топливом на глубину не более 50 мм. Герметично заглушить резьбовое отверстие крышки смотрового люка регулятора и ввертыш подвода масла. К ввертышу дренажной полости топливного насоса подвести сжатый воздух под давлением от 0.05 до 0.07 МПа (от 0,5 до 0,7 кгс/см²).

Топливный насос считается годным, если в течение 20 с в сосуде с топливом не наблюдается выделения пузырьков воздуха;

2. Соединений топливного насоса. Данное испытание проводится на специальном стенде, оборудованном комплектом форсунок с топливопроводами высокого давления. Рабочая жидкость та же, что и для испытаний насосов.

Пружины форсунок отрегулировать на давление начала впрыскивания от 21,0 до 21,8 МПа (от 210 до 218 кгс/см²). Наружные поверхности топливного насоса должны быть сухими. Режим испытания – номинальный, рычаг управления регулятором частоты вращения должен упираться в болт ограничения максимального скоростного режима.

Давление топлива в магистрали топливного насоса должно быть от 0.05 до 0.10 МПа (от 0.5 до 1.0 кгс/см²), температура топлива от 50 до 60 °C. Продолжительность испытания 45 мин.

Течи топлива через уплотнения и соединения топливного насоса не допускаются.

3. Герметичность топливных магистралей.

Для этого заглушить отверстие ввертыша перепускного клапана и штуцеры топливного насоса. К ввертышу подвода топлива присоединить стендовый топливопровод, снять крышку топливного насоса и плавно поднять давление топлива в магистрали до 2 МПа (20 кгс/см²). В течение 15 с течь топлива изпод ввертышей, пробок корпуса, втулок плунжеров, штуцеров и через стенки не допускается.

При проверке топливного насоса контролируется:

- геометрическое начало нагнетания топлива секциями насоса:
- величина и неравномерность подачи топлива по секциям насоса.

Геометрическое начало нагнетания топлива секциями насоса определять по моменту прекращения истечения топлива из штуцеров топливного насоса, проверять и регулировать при положении рейки, соответствующем номинальной подаче, при этом рейка должна выступать на (19±1) мм от торца насоса.

Начало нагнетания топлива первой секцией насоса должно соответствовать подъему толкателя (4,5±0,05) мм от крайнего нижнего положения до момента перекрытия торцом плунжера впускного окна втулки.

Величину подъема толкателя измерять индикатором (рис. 68).

В момент начала нагнетания топлива первой секцией риски на указателе начала подачи топлива и на муфте опережения впрыскивания топлива должны совпадать. Несовпадение рисок не должно превышать 0.5° .

Секции насоса должны начинать нагнетание в следующем порядке (в градусах – углы поворота кулачкового вала):

F 7 F	J
Секция №1 – 0°	Секция №4 – 180°
Секция № 3 – 45°	Секция №5 – 225°
Секция № 6 – 90°	Секция №7 – 270°
Секция № 2 – 135°	Секция №8 – 315°

Отклонение углов поворота кулачкового вала, соответствующих началу нагнетания топлива секциями насоса относительно геометрического начала нагнетания топлива первой секцией насоса, должно быть \pm 30 минут, не более.

Регулировка начала нагнетания топлива осуществляется болтом толкателя. При вывертывании болта топливо начинает подаваться раньше, при ввертывании – позже. После регулировки законтрить регулировочный болт гайкой.

Проверку и регулировку величины и равномерности подачи топлива; производить в следующем порядке:

- 1. Проверить давление начала открытия нагнетательных клапанов, которое должно быть $1\pm0,15$ МПа $(10\pm1,5$ кгс/см²). Контроль давления начала открытия нагнетательных клапанов производить по моменту начала движения топлива из топливопроводов с внутренним диаметром (2±0,05) мм или штуцеров при плавном повышении давления топлива на входе в рейки, соответствующем насос. положении выключенной полаче топлива. заглушенном отверстии И ввертыша перепускного клапана.
- 2. Проверить давление топлива в магистрали на входе в топливный насос. Давление должно быть 0.075 ± 0.025 МПа $(0.75\pm0.25~{\rm кгc/cm^2}$ при упоре рычага управления в болт ограничения максимального скоростного режима и номинальной частоте вращения кулачкового вала $1030\pm10~{\rm muh^{-1}}$ для топливного насоса $806.6-50~{\rm u}~980\pm10~{\rm muh^{-1}}$ для топливного насоса 807.6-50. При необходимости вывернуть пробку перепускного клапана и шайбами отрегулировать давление открытия.
- 3. Проверить герметичность нагнетательных клапанов. В положении рейки, соответствующем выключенной подаче, нагнетательные клапаны в течение 2 минут не должны пропускать топливо под давлением 0,11±0,1 МПа (1,1±1 кгс/см²). При наличии течи заменить комплект нагнетательного клапана.
- 4. Проверить наличие запаса хода рейки на выключение подачи. Запас хода рейки (величина свободного хода рейки люфт) должен быть не менее 1 мм при упоре рычага управления регулятором в болт ограничения минимальной частоты вращения и при частоте вращения кулачкового вала от 450 до 500 мин⁻¹. Регулируется винтом кулисы.

ВНИМАНИЕ! ВЫСТУПАНИЕ ВИНТА КУЛИСЫ ЗА ВНЕШНИЙ ТОРЕЦ КРЫШКИ РЕГУЛЯТОРА НЕДОПУСТИМО.

5. Проверить начало выключения пусковой подачи топлива при 230...250 мин⁻¹ при упоре рычага управления в болт ограничения минимального скоростного режима по началу движения рейки. Если требуется увеличить обороты, снять зацеп

пружины с рычага райки и ввернуть его в пружину. Для уменьшения оборотов зацеп выворачивается. После этого поставить зацеп на рычаг рейки.

- 6. Проверить величину средней пусковой подачи топлива, которая должна быть не менее 230 мм³/цикл при частоте вращения кулачкового вала 80±10 мин⁻¹. Регулируется винтом кулисы только в сторону увеличения подачи топлива.
- 7. Проверить частоту вращения кулачкового вала насоса, соответствующую началу действия регулятора частоты вращения, фиксировать по тахометру в момент начала движения рейки в сторону выключения подачи, определяемый с помощью индикаторного приспособления. Начало действия регулятора должно происходить при частоте вращения кулачкового вала от 1065 до 1085 мин⁻¹ для топливного насоса 806.6-50 и от 1025 до 1045 мин⁻¹ для топливного насоса 807.6-50. Подрегулировку производить болтом ограничения максимального скоростного режима.
- 8. Проверить частоту вращения, соответствующую полному выключению подачи топлива, фиксировать по тахометру в момент окончания истечения топлива через форсунки. Полное выключение подачи должно происходить при частоте вращения на 50...100 мин⁻¹ больше частоты вращения кулачкового вала, при которой начинает действовать регулятор.
- случае необходимости произвести регулировку изменением двуплечего рычага. положения винта ввертывании двуплечего рычага частота врашения винта кулачкового вала, соответствующая полному выключению подачи топлива уменьшается, при вывертывании – увеличивается. При этом изменяется и начало выключения, поэтому необходима его последующая проверка и подрегулировка по п.7. По окончании регулировки винт двуплечего рычага И ограничения максимального режима надежно законтрить гайками.
- 9. Проверить и при необходимости отрегулировать со стендовым комплектом форсунок модели 261-03С при упоре рычага управления регулятором в болт ограничения максимального скоростного режима среднюю цикловую подачу топлива, приращение средней цикловой подачи и неравномерность подачи топлива по секциям, которые должны быть:

Модель топлив- ного насоса	Частота вращения кулачкового вала, мин ⁻¹	Средняя цикловая подача топлива насосом, мм ³ /цикл	Приращение фактической средней цикловой подачи по отношению к фактической средней цикловой подаче на номинальном режиме, мм ³ /цикл	Неравномер- ность подачи по секциям насоса, % не более
806.6-50	1030±10	143-147	1	5
800.0-30	650±10	ı	4 – 9	8
	980±10	133-137	-	5
807.6-50	850±10	-	2 – 6	_
	650±10	_	6 – 10	8

q - средняя цикловая подача топлива насосом на номинальном режиме.

Величина средней цикловой подачи рассчитывается как сумма подачи всех секций, деленная на количество секций.

Неравномерность подачи топлива по секциям рассчитывается по формуле:

$$\delta = rac{2 \cdot \left(q_{\, {\scriptscriptstyle I\! I}}^{\, max} - q_{\, {\scriptscriptstyle I\! I}}^{\, min}
ight)}{q_{\, {\scriptscriptstyle I\! I}}^{\, max} + q_{\, {\scriptscriptstyle I\! I}}^{\, min}} \cdot 100 \, \% _0$$
 , где:

- 10. Проверить работу корректора по наддуву, для этого необходимо:
 - промыть в чистом бензине сетчатый фильтр штуцера 15 (рис. 23) и тщательно продуть его сжатым воздухом;
 - прочистить калибровочное отверстие в корпусе корректора мягкой проволокой диаметром от 0,5 до 0,7 мм;
 - проверить герметичность полости мембраны корректора. Для этого к отверстию в крышке корпуса мембраны подвести воздух под давлением $0.06\pm0.01~\mathrm{M\Pi a}$ $(0.6\pm0.1~\mathrm{krc/cm^2})$. При полностью перекрытом подводящем воздуховоде падение давления в полости мембраны за 2 минуты не должно превышать $0.01~\mathrm{M\Pi a}$ $(0.1~\mathrm{krc/cm^2})$;
 - при упоре рычага управления в болт ограничения максимального скоростного режима установить частоту вращения 650 ± 10 мин⁻¹ и подвести к корректору масло под давлением $0,275\pm0,025$ МПа $(2,75\pm0,025$ кгс/см²).

Для введения в работу корректора но наддуву одноразово выключить подачу топлива скобой кулисы, после чего перевести скобу кулисы в положение включенной подачи;

 проверить величину цикловых подач при различных давлениях воздуха в полости мембраны, которые должны быть:

Модель топливного	*2	икловая подача и давлении воз корректора, N	вдуха в полости	
насоса	0,055+0,02 (0,55+0,2)	0,05+0,02 (0,5+0,2)	0,035±0,001 (0,35±0,01)	≤ 0,02 (0,2)
806.6-50	147 – 156	_	126 – 132	115 – 121
807.6-50	_	139 – 147	120 – 132	113 – 121

Необходимо произвести подрегулировку корректора, если замеренные величины цикловых подач отличаются от указанных.

Регулировка величины цикловой подачи топлива при давлении воздуха, равном нулю, на встроенном корректоре по наддуву выполняется регулировочным болтом 21 (рис. 23). При ввертывании болта подача увеличивается, при вывертывании – уменьшается. После регулировки болт законтрить гайкой.

Цикловая подача при промежуточных давлениях воздуха регулируется корпусом пружины корректора. При вворачивании корпуса пружины величина топливоподачи уменьшается, при выворачивании — увеличивается. После регулировки корпус пружины законтрить гайкой.

Перед заменой изношенной мембраны (при необходимости) нужно замерить у мембраны со штоком в сборе величину выступания штока от нижнего торца гайки. После этого заменить мембрану и собрать ее со штоком с той же величиной выступания штока с точностью 0,1 мм, при этом западание торца золотника 12 (рис. 23) относительно торца поршня 13 должно быть 0,2...0,9 мм при отсутствии зазора между торцем поршня и корпусом корректора.

При установке корректора по наддуву после демонтажа (если в этом была необходимость) на регулятор отвести скобой кулисы рейку насоса в крайнее выключенное положение и установить корректор по наддуву в корпус корректора, после чего отпустить скобу.

Проверить регулировку корректора по наддуву на наличие выключения подачи топлива регулятором.

11. Винтом подрегулировки мощности при упоре рычага управления в болт ограничения максимального скоростного режима произвести ограничение номинальных цикловых подач до значений, которые должны быть:

Модель насоса	Частота вращения кулачкового вала, мин ⁻¹	Средняя цикловая подача топлива секциями насоса, мм ³ /цикл
806.6-50	1030±10	133 – 137
807.6-50	980±10	123 – 127

Винт подрегулировки мощности надежно законтрить и опломбировать.

Проверить запас хода рейки при упоре рычага управления регулятором в болт ограничения минимального скоростного режима и при частоте вращения кулачкового вала 650 мин⁻¹. Запас хода рейки должен быть не менее 0.5 мм.

12. Проверить выключение цикловой подачи скобой кулисы при повороте на 40...45° от исходного положения. Подача топлива из форсунок всех секций топливного насоса при любой частоте вращения кулачкового вала должна полностью выключаться.

Установить крышки на топливный насос и регулятор и запломбировать их. Установить пломбу на болт регулировки максимальных оборотов.

УСТАНОВКА ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ НА ДВИГАТЕЛЬ

- 1. Установить ведомую полумуфту (рис. 58, 59) на муфту опережения (демпферную муфту) и закрепить болтами.
- 2. Повернуть муфту так, чтобы бобышки ведомой полумуфты установились в горизонтальное положение, а метка на торце муфты находилась в зоне указателя.
- 3. Установить фланец полумуфты в сборе с ведущей полумуфтой и пакетами пластин на вал привода, при этом выступ «а» на фланце полумуфты должен находиться с левой стороны, если смотреть на привод со стороны вентилятора.
- 4. Установить на двигатель топливный насос высокого давления с муфтой опережения (демпферной муфтой) в сборе и закрепить его болтами. Перед затяжкой стяжного болта привода и после установки угла опережения

впрыскивания отрегулировать плоскостность пакетов пластин путем перемещения фланца полумуфты по валу привода. На блок цилиндров двигателя топливный насос устанавливать в вертикальном положении, болты крепления заворачивать равномерно, не допуская завала насоса. Окончательный момент затяжки болтов крепления насоса 30...40 Н·м (3...4 кгс м).

- 5. Соединить секции насоса с форсунками топливопроводами высокого давления в порядке, показанном на рис. 34.
- 6. Отрегулировать угол опережения впрыскивания топлива.
- 7. Проверить наличие масла в корпусах топливного насоса высокого давления и регулятора, при необходимости, долить масло до уровня отверстия под трубку отвода масла.
- Подсоединить трубки подвода и отвода масла и топливопроводы.

После пуска двигателя подрегулировать минимальную частоту вращения холостого хода коленчатого вала следующим образом:

- 1. Ослабив контргайку, вывернуть корпус буферной пружины на 2 3 мм.
- 2. Болтом ограничения минимальной частоты вращения (рычаг управления должен упираться в этот болт) подрегулировать минимальную частоту вращения холостого хода до появления небольших колебаний частоты вращения коленчатого вала двигателя. При ввертывании болта обороты двигателя увеличиваются, при вывертывании уменьшаются.
- 3. Ввертывать корпус буферной пружины до исчезновения неустойчивости частоты вращения. Категорически запрещается ввертывать корпус буферной пружины до совмещения его торца с торцом контргайки. После регулировки законтрить болт минимальной частоты вращения и корпус буферной пружины гайками.

Минимальную частоту вращения холостого хода можно подрегулировать также на новом двигателе в начальный период его эксплуатации.

Нарушать заводскую регулировку максимальных оборотов без последующей проверки на стенде в процессе эксплуатации категорически запрещается.

СЛИВ ОТСТОЯ ИЗ ТОПЛИВНЫХ ФИЛЬТРОВ ГРУБОЙ ОЧИСТКИ

Для слива отстоя из топливных фильтров грубой очистки отвернуть на 3-4 оборота пробки (рис. 31 поз. 9; рис. 32 поз. 9 и 10) и слить по 0,1 л топлива в подставленную посуду.

После слива отстоя пробки завернуть и пустить двигатель на 3-4 минуты для удаления воздушных пробок.

Сливать отстой особенно важно в зимнее время для удаления конденсирующей воды.

- 1. Поставить шайбу 6 болта крепления и прокладку 7 колпака, установить колпак с элементом на место и тщательно затянуть болт 5.
- 2. Пустить двигатель и убедиться в герметичности фильтра; подтекание топлива устранить подтяжкой болта 5.

ПРОМЫВКА ФИЛЬТРА ГРУБОЙ ОЧИСТКИ ТОПЛИВА

- 1. Слить топливо из фильтра.
- 2. Отвернуть четыре болта (рис. 32) крепления колпака 2 фильтра к крышке 7, снять колпак фильтра и фланец 4.
- 3. Отвернуть фильтрующий элемент в сборе 3.
- 4. Тщательно промыть колпак и фильтрующий элемент чистым дизельным топливом.
- 5. Собрать фильтр в обратной последовательности. При установке колпака убедиться в правильном (без смещения) положении прокладки в канавке крышки. При затрудненном доступе к фильтру для исключения случаев смещения прокладки допускается перед установкой прокладку со стороны крышки смазать в нескольких точках консистентной смазкой.
- 6. Пустить двигатель на 3-4 минуты для удаления воздушных пробок. Убедиться в герметичности фильтра. Устранять подтекание топлива подтяжкой болтов, пробок и заменой уплотнительной прокладки.

ЗАМЕНА СМЕННОГО ФИЛЬТРА ДЛЯ ТОПЛИВА ФИЛЬТРА ТОНКОЙ ОЧИСТКИ

- 1. Заглушить двигатель.
- 2. Отвернуть сменный фильтр для топлива 8 (см. рис. 33). В случае затруднённого отворачивания фильтра использовать специальный съёмник.
- 3. Смазать уплотнительное кольцо 7 нового сменного фильтра тонким слоем моторного масла, проверив при этом состояние его уплотнительного кольца и опорной поверхности корпуса.
- 4. Навернуть сменный фильтр на штуцер 1 до упора, затем довернуть на 3/4 оборота.
- 5. Прокачать топливную систему ручным топливопрокачивающим насосом.
- 6. Пустить двигатель и проверить фильтр на герметичность. При необходимости довернуть фильтр дополнительно.

При замене использовать следующие сменные фильтры для топлива (см. раздел «Эксплуатационные материалы»):

- 1. ЛДКЯ 387631.071 (код 8.9193) фильтр сменный Т6103 для топлива производства СОАО «ДИФА» Республика Беларусь или «Торгового дома автофильтр ДИФА» г. Москва.
- 2. ФТ 047.1117010 (код 8.9132) фильтр сменный для топлива производства ОАО «Автоагрегат» г. Ливны.
- 3. 536.1117075 (код 8.9133) фильтр сменный для топлива WDK 940/1 (66 505 59 658) фирмы «MANN+HUMMEL».

ВНИМАНИЕ! ИСПОЛЬЗОВАТЬ ТОЛЬКО УКАЗАННЫЕ ВЫШЕ СМЕННЫЕ ФИЛЬТРЫ ДЛЯ ТОПЛИВА

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТУРБОКОМПРЕССОРА

Техническое обслуживание турбокомпрессора проводить через каждые 3000 часов работы двигателя.

При техническом обслуживании проверить осевой и радиальный люфты ротора с помощью индикатора.

Люфт определяется как разность показаний индикатора при отклонении вала в двух взаимно противоположных направлениях (рис. 70). Допустимые предельные величины люфтов: осевой - 0,081...0,124 мм, радиальный - 0,377...0,614 мм. Если люфты больше предельных значений, турбокомпрессор надо заменить.

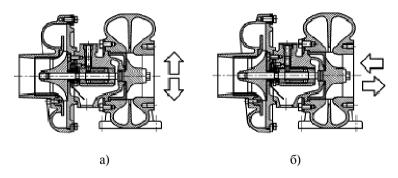


Рис. 70. Проверка люфта ротора: а) - радиального; б) - осевого.

При установке турбокомпрессора на двигатель тщательно проследить за чистотой трубопроводов, подсоединяемых к турбокомпрессору и отсутствие в них предметов и мусора.

<u>После установки турбокомпрессора заполнить корпус</u> подшипников чистым маслом через отверстие подвода масла.

Тщательно следить за отсутствием подсосов и подтеканий в воздушных, газовых, масляных трубопроводах и их соединениях.

Следует иметь в виду, что оптимальный режим работы турбокомпрессора осуществляется в диапазоне более высокой частоты вращения коленчатого вала двигателя.

РАЗБОРКА И СБОРКА ТУРБОКОМПРЕССОРА

Для очистки деталей турбокомпрессора произвести его частичную разборку, для этого:

- 1. Снять турбокомпрессор с двигателя.
- 2. Нанести метки на корпусы турбокомпрессора с таким расчетом, чтобы при сборке сохранить взаимное расположение корпусов.
- 3. Отвернуть болты корпуса компрессора и снять корпус, не допуская его перекоса, таким образом, чтобы не повредить лопатки колеса компрессора.
- 4. Отвернуть болты крепления корпуса турбины и снять корпус. При затрудненном отвертывании болтов смазать их резьбу дизельным топливом.

Дальнейшая разборка турбокомпрессора в условиях эксплуатации не допускается.

Сборку турбокомпрессора производить в порядке, обратном разборке. Корпуса устанавливать осторожно, предохраняя от повреждения лопатки рабочих колес. Для обеспечения правильного взаимного расположения корпусов, использовать метки, нанесенные перед разборкой.

ОБСЛУЖИВАНИЕ ВОЗДУШНОГО ФИЛЬТРА

Несвоевременное обслуживание воздушного фильтра ухудшает очистку воздуха и приводит к проникновению пыли в двигатель, что вызывает повышенный износ цилиндропоршневой группы и преждевременный выход двигателя из строя.

Для нормальной работы двигателя требуется регулярное обслуживание воздушного фильтра, а также постоянное внимание к состоянию его деталей, особенно уплотнительных прокладок, и к правильной установке воздушного фильтра.

Обслуживание первой ступени воздушного фильтра производить периодически при сезонном обслуживании.

При длительной работе в условиях повышенной запыленности и при резких изменениях условий окружающей среды сроки обслуживания определять, исходя из опыта работы в данных условиях и состояния первой ступени.

Для обслуживания первой ступени фильтра отвернуть гайки крепления бункера. Снять бункер, заглушку бункера и удалить из него пыль. Отвернуть гайку крепления фильтрующих элементов и вынуть их. Корпус воздушного фильтра промыть в бензине, дизельном топливе или горячей воде, просушить.

При сборке воздушного фильтра обратить внимание:

- на состояние уплотнительных прокладок. Прокладки, имеющие надрывы, заменить. Качество уплотнения контролировать по наличию сплошного отпечатка на прокладке.
- при использовании двух фильтрующих элементов установка проставки между ними обязательна.
 - стрелка на бункере должна быть направлена вверх.

Фильтрующий элемент следует обслуживать по показанию индикатора засоренности воздушного фильтра: в случае отсутствия индикатора — при ТО-2, а в условиях повышенной запыленности — чаще, исходя из опыта эксплуатации в данных условиях. Ориентировочный срок службы фильтрующего элемента составляет 1500 часов. Излишне частое обслуживание фильтрующего элемента сокращает срок его службы, так как общее количество обслуживании элемента ограничено (не более 6 раз) из-за возможного разрушения фильтрующего картона.

Для обслуживания элемента снять бункер, отвернуть гайку крепления и вынуть элемент из корпуса фильтра. При наличии на картоне элемента пыли без сажи или при последующем немедленном его использовании обдуть элемент сухим сжатым воздухом до полного удаления пыли.

Во избежание прорыва фильтрующего картона давление сжатого воздуха должно быть не более 300 кПа (3 кгс/см²). Струю воздуха следует направлять под углом к поверхности и регулировать силу струи изменением расстояния шланга от элемента.

При наличии на картоне пыли, сажи, масла, если обдув сжатым воздухом неэффективен, промыть элемент в растворе моющего вещества ОП-7 или ОП-10 (ГОСТ 8433–81) в теплой $(40–50^{\circ}\text{C})$ воде концентрации 20–25 г вещества на 1 литр воды.

Взамен раствора ОП-7 или ОП-10 можно использовать раствор той же концентрации стиральных порошков бытового назначения.

Для промывки элемента погрузить его на полчаса в указанный раствор с последующим интенсивным вращением или окунанием в растворе в течение 10 - 15 минут.

После промывки в растворе прополоскать элемент в чистой теплой воде и тщательно просушить. Для просушки запрещается применять открытое пламя и воздух с температурой выше 70°С.

После каждого обслуживания элемента или при установке нового проверить его состояние визуально, подсвечивая изнутри лампой. При наличии механических повреждений, разрыва гофр картона, отслаивания крышек и картона от клея, что может привести к пропуску пыли, элемент заменить.

Новый фильтрующий элемент 8421.1109080, 238Н-1109080 должен содержать:

- 215-220 гофр при ширине гофры 55 мм;
- 235-245 гофр при ширине гофры 48-50 мм.

ПРОВЕРКА ГЕРМЕТИЧНОСТИ ВПУСКНОГО ТРАКТА

Герметичность впускного тракта должна обеспечиваться уплотнительными и крепежными деталями промежуточных трубопроводов. Обращать повышенное внимание на состояние и правильность установки уплотнительных и крепежных деталей системы: рукавов, прокладок, хомутов. При необходимости – заменять. При отсутствии герметичности в цилиндры двигателя вместе с воздухом будет неизбежно попадать пыль и грязь, что приведет к преждевременному износу деталей цилиндропоршневой группы.

Контроль герметичности впускного тракта проводить путем создания в тракте избыточного давления с добавлением дыма. Для проверки герметичности впускного тракта вместо фильтрующего элемента установить заглушку (см. рис. 71) с закрепленным внутри нее тлеющим материалом (паклей, технической ватой и др.).

Размеры заглушки зависят от размеров фильтрующего элемента воздушного фильтра, на место которого устанавливается заглушка. К одной из трубок Ø10х1 заглушки подсоединить источник сжатого воздуха, к другой – контрольную трубку с краном или зажимом. В качестве источника сжатого воздуха можно пользоваться насосом для накачки шин или промышленной сетью с давлением воздуха 10–20 кПа (0,1–0,2 кгс/см²); более высокое давление приведет к разрушению трубопроводов.

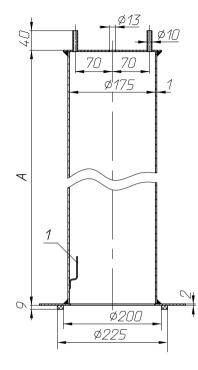
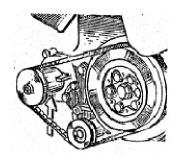


Рис. 71. Заглушка для проверки герметичности впускного тракта: 1 – кронштейн для закрепления тлеющего материала

Элемент фильтрующий	Размер А
238H-1109080	355
236H-1109080	355
8421.1109080	550


Открыв на время контрольную трубку, убедиться в заполнении впускного тракта дымом, после чего в течение 2–3 минут подавать в тракт воздух, проверяя внешним осмотром состояние впускного тракта. В местах негерметичности будет наблюдаться выход дыма.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ СИСТЕМЫ ОХЛАЖДЕНИЯ

От исправной работы системы охлаждения в значительной степени зависят экономичность, надежность, срок службы и другие показатели двигателя.

Для обеспечения нормальной работы двигателя выполнять следующие требования:

- 1. Заполнять систему охлаждения рекомендованными специальными низкозамерзающими жидкостями или в исключительных случаях на непродолжительное время чистой мягкой водой.
- 2. Заливать охлаждающую жидкость через воронку с сеткой, пользуясь чистой посудой.
- 3. Следить за температурой охлаждающей жидкости, поддерживая ее в пределах 75 90°C.
- 4. Во избежание появления деформаций головок и рубашки блока цилиндров охлаждающую жидкость в систему охлаждения прогретого двигателя доливать постепенно и обязательно во время его работы.
- 5. Если система охлаждения заполнена водой, то регулярно промывать систему охлаждения чистой водой с помощью специального промывочного пистолета, а при отсутствии его сильной струей чистой воды, желательно пульсирующей. Систематически удалять накипь из системы охлаждения.
- 6. При применении в качестве охлаждающей жидкости Тосола необходимо периодически следить за его цветом. Если Тосол приобретает красно-бурую окраску, то это свидетельствует о его агрессивности по отношению к конструктивным материалам деталей двигателя. В этом случае Тосол необходимо заменить, промыв перед этим систему охлаждения (см. п. 5).
- 7. Следить за исправностью торцового уплотнения крыльчатки водяного насоса, имея в виду, что охлаждающая жидкость, просачивающаяся в подшипники водяного насоса, выводит их из строя. О неисправности торцового уплотнения свидетельствует течь воды из дренажного отверстия (рис. 72) на корпусе водяного насоса, закупоривать которое нельзя. Насос с неисправным уплотнением подлежит ремонту.
- 8. В случае нарушения температурного режима проверить исправность термостатов и их прокладок. Температура начала открытия основного клапана термостата должна быть 80±2°C

(указана на корпусе термостата). Клапан должен открываться полностью, перемещаясь не менее на 8 мм от его седла. Неисправный термостат заменить новым.

Рис. 72. Дренажное отверстие

9. Для исключения размораживания радиатора при эксплуатации в зимних условиях система охлаждения двигателя при применении термостатов с дренажным клапаном должна быть заправлена только низкозамерзающей жидкостью (см. раздел «Эксплуатационные материалы»). Указанные термостаты имеют обозначение Т117-06 или ТС107-06М, выполнены из нержавеющей стали (вместо латуни на ранее применявшихся термостатах) и устанавливаются на двигатели с марта 2007 г.

УДАЛЕНИЕ НАКИПИ ИЗ СИСТЕМЫ ОХЛАЖДЕНИЯ

Накипь из системы охлаждения удалять раствором технического трилона Б (ТУ 6-01-634–71) в воде концентрации 20 г/л. Трилон – порошок белого цвета, не ядовит, легко растворяется в воде, не вызывает вспенивания воды при ее нагреве и кипячении.

Раствор трилона заливать в систему охлаждения. После одного дня работы двигателя (не менее 6–7 ч) отработанный раствор слить и залить свежий. Промывку продолжать в течение четырех—пяти дней. После окончания промывки в систему охлаждения залить воду, содержащую 2 г/л трилона.

При отсутствии трилона Б накипь из системы охлаждения допускается удалять раствором, состоящим из кальцинированной (стиральной) соды в количестве 0,5 кг на 10 л воды и керосина 1 кг на 10 л воды. Раствор залить в систему охлаждения на 24 часа, из которых двигатель не менее 8 часов должен работать на эксплуатационном режиме, после чего слить раствор в горячем состоянии, а после охлаждения двигателя промыть систему охлаждения чистой водой.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ЭЛЕКТРООБОРУДОВАНИЯ

Во время эксплуатации предохранять агрегаты электрооборудования от попадания на них масла и топлива, а также воды при мойке двигателя.

ВНИМАНИЕ! ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ГЕНЕРАТОРА ПРОВОДИТЬ В СООТВЕТСТВИИ С ПОЛОЖЕНИЯМИ «РУКОВОД-СТВА ПО ЭКСПЛУАТАЦИИ» ИЗДЕЛИЯ, НА КОТОРОЕ УСТАНАВЛИВАЕТСЯ СИЛОВОЙ АГРЕГАТ, И, В СЛУЧАЕ ОТСУТСТВИЯ ТАКИХ УКАЗАНИЙ, РУКОВОДСТВОВАТЬСЯ НАСТОЯЩИМ РУКОВОДСТВОМ.

ГЕНЕРАТОР

Периодичность и объем работ технического обслуживания генераторов различных моделей имеют отличия. Необходимо руководствоваться положениями технического обслуживания соответствующие модели генератора, установленного на Вашем силовом агрегате.

ВНИМАНИЕ! ЗАПРЕЩАЕТСЯ НА АВТОМОБИЛЕ ПУСК ДВИГАТЕЛЯ ПРИ ОТКЛЮЧЕННОМ ПЛЮСОВОМ ПРОВОДЕ ГЕНЕРАТОРА. ЭТО ПРИВЕДЕТ К ВОЗНИКНОВЕНИЮ НА ГЕНЕРАТОРЕ ПОВЫШЕННОГО НАПРЯЖЕНИЯ ОПАСНОГО ДЛЯ КРЕМНИЕВЫХ ВЫПРЯМИТЕЛЕЙ.

ПРИ ДЛИТЕЛЬНЫХ СТОЯНКАХ АВТОМОБИЛЯ ОТКЛЮЧАТЬ ВЫКЛЮЧАТЕЛЬ МАССЫ ВО ИЗБЕЖАНИЕ РАЗРЯДА АККУМУЛЯТОРНЫХ БАТАРЕЙ ЧЕРЕЗ ОБМОТКУ ВОЗБУЖДЕНИЯ ГЕНЕРАТОРА.

ВО ИЗБЕЖАНИЕ ВЫХОДА ИЗ СТРОЯ ГЕНЕРАТОРНОЙ УСТАНОВКИ ЗАПРЕЩАЕТСЯ:

- ОТКЛЮЧЕНИЕ ПРОВОДА ОТ ПЛЮСОВОГО ВЫВОДА ГЕНЕРАТОРА ИЛИ ОТКЛЮЧЕНИЕ БАТАРЕИ ВЫКЛЮЧАТЕЛЕМ МАССЫ ПРИ РАБОТАЮЩЕМ ГЕНЕРАТОРЕ;
- ПРОВЕРКА ИСПРАВНОСТИ ГЕНЕРАТОРНОЙ УСТАНОВКИ ПУТЕМ ЗАМЫКАНИЯ КЛЕММ ПЕРЕМЫЧКАМИ НА МАССУ И МЕЖДУ СОБОЙ.

ПРИ УСТАНОВКЕ АККУМУЛЯТОРНЫХ БАТАРЕЙ НА АВТОМОБИЛЬ И ИХ ПОДКЛЮЧЕНИИ СТРОГО СОБЛЮДАТЬ ПОЛЯРНОСТЬ («+» В ЦЕПЬ, « – » НА МАССУ).

ПРОВЕРКУ НАТЯЖЕНИЯ ПРИВОДНЫХ РЕМНЕЙ И НАДЕЖНОСТИ ПОДКЛЮЧЕНИЯ ПРОВОДОВ К ГЕНЕРАТОРНОЙ УСТАНОВКЕ ПРОВОДИТЬ ПРИ НЕРАБОТАЮЩЕМ ДВИГАТЕЛЕ И ОТКЛЮЧЕННОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕ.

ОТСОЕДИНЕНИЕ И ПРИСОЕДИНЕНИЕ ПРОВОДОВ К ГЕНЕРАТОРУ ВЫПОЛНЯТЬ ТОЛЬКО ПРИ ОТКЛЮЧЕННОЙ АККУМУЛЯТОРНОЙ БАТАРЕЕ.

ИСПРАВНАЯ РАБОТА ГЕНЕРАТОРА ОБЕСПЕЧИВАЕТСЯ ПРИ УСЛОВИИ НАДЕЖНОГО СОЕДИНЕНИЯ ВСЕХ КОНТАКТОВ, В ТОМ ЧИСЛЕ МЕЖДУ КОРПУСОМ ГЕНЕРАТОРА И ДВИГАТЕЛЕМ.

ПРОВЕРКУ ВЫПРЯМИТЕЛЬНОГО БЛОКА ТОЛЬКО ОТ ИСТОЧНИКА ПОСТОЯННОГО ТОКА НАПРЯЖЕНИЕМ НЕ БОЛЕЕ 24 В, ВКЛЮЧЕННОГО ПОСЛЕДОВАТЕЛЬНО С КОНТРОЛЬНОЙ ЛАМПОЙ.

ПРИ ПРОВЕДЕНИИ СВАРОЧНЫХ РАБОТ НА АВТОМОБИЛЕ ОТКЛЮЧИТЬ ПРОВОДА ОТ КЛЕММ «+», «D», «W». ПРОВОД МАССЫ СВАРОЧНОГО АППАРАТА ДОЛЖЕН БЫТЬ ПОДСОЕДИНЕН В НЕПОСРЕДСТВЕННОЙ БЛИЗОСТИ ОТ СВАРНОГО ШВА.

КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ПРОИЗВОДИТЬ ПОВТОРНОЕ РАЗВОЗБУЖДЕНИЕ ГЕНЕРАТОРА НАЖАТИЕМ КНОПКИ ЭФУ ПРИ ЗАПУЩЕННОМ ДВИГАТЕЛЕ, ТАК КАК ЭТО МОЖЕТ ПРИВОДИТЬ К ОТКАЗАМ РЕГУЛЯТОРА НАПРЯЖЕНИЯ. ГЕНЕРАТОР ДОЛЖЕН БЫТЬ РАЗВОЗБУЖДЕН ПЕРЕД ЗАПУСКОМ ДВИГАТЕЛЯ ПРИ ИСПОЛЬЗОВАНИИ ЭФУ.

ГЕНЕРАТОР 1322.3771

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При TO-1 без снятия генератора с двигателя проводить техническое обслуживание в следующем объеме:

- 1. Проверить затяжку и при необходимости подтянуть крепление генератора к двигателю.
- 2. Проверить затяжку и чистоту мест присоединения проводов к генератору, аккумуляторной батарее и регулятору напряжения. При необходимости очистить места соединений и подтянуть контактные гайки и винты.
- 3. Проверить состояние щеточного узла, для этого:
 - отсоединить штекер от генератора;
 - отвернуть винты крепления щеткодержателя и аккуратно снять его;
 - проверить свободное (без заеданий и рывков) перемещение щеток в направляющих щеткодержателя;

- проверить высоту щеток, которая должна быть не менее 8 мм. Изношенные щетки, при необходимости, заменить. При замене щеток проверить состояние контактных колец. Если износ контактных колец превышает 0.5 мм по диаметру, кольца проточить.
- установить щеткодержатель со щетками на генератор в обратной последовательности.

При необходимости генератор разобрать. Разборку генератора производить только в специальной мастерской, располагающей необходимыми инструментами и измерительными приборами. Внимательно осмотреть шарикоподшипники. При наличии дефекта шарикоподшипники заменить. Собрать генератор и проверить электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ.

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отвернуть два винта крепления щеткодержателя и аккуратно снять его с генератора.
- 2. Отвернуть четыре винта и снять крышку со стороны контактных колец вместе со статором.
- 3. Отвернуть три гайки крепления выводов статора к выпрямительному блоку, статор отделить от крышки.
- 4. Отвернуть гайку крепления шкива и снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 5. Снять с вала ротора крышку со стороны привода при помощи пресса.

Сборку генератора производить в порядке, обратном разборке.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 73, при отсоединенном нулевом выводе обмотки статора от нулевого вывода регулятора.

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора 1322.3771».

При проверке выключатель Q1 разомкнут, а выключатели Q2, Q3 замыкаются. Частота вращения ротора постепенно повышается, пока напряжение не достигнет значения 26 В по вольтметру PV. Значения тока нагрузки устанавливаются по амперметру PA.

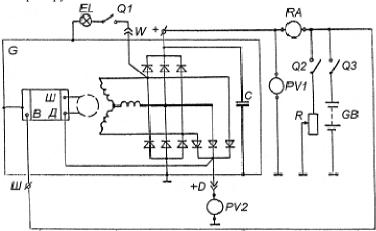


Рис. 73. Схема для проверки электрических характеристик: G – генератор; GB – аккумуляторная батарея; C – конденсатор 2,2 мк Φ ±20%; R – реостат нагрузочный на ток не менее 60 A; PV1 PV2 – вольтметры; PA – амперметр; Q1-Q3 – выключатели; EL – контрольная лампа; «Ш», «+», «W», «+D» – выводы генератора

ГЕНЕРАТОР 1702.3771

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При ТО-1 без снятия генератора с двигателя проводить техническое обслуживание в следующем объеме:

1. Проверить затяжку и при необходимости подтянуть крепление генератора к двигателю.

- 2. Проверить затяжку и чистоту мест присоединения проводов к генератору, аккумуляторной батарее и регулятору напряжения. При необходимости очистить места соединений и подтянуть контактные гайки и винты.
- 3. Проверить состояние щеточного узла, для этого:
 - отсоединить штекер от генератора;
 - отвернуть винты крепления щеткодержателя и аккуратно снять его;
 - проверить свободное (без заеданий и рывков) перемещение щеток в направляющих щеткодержателя;
 - проверить высоту щеток, которая должна быть не менее 8 мм. Изношенные щетки, при необходимости, заменить. При замене щеток проверить состояние контактных колец. Если износ контактных колец превышает 0.5 мм по диаметру, кольца проточить до ровной поверхности.
 - установить щеткодержатель со щетками на генератор в обратной последовательности.

При необходимости генератор разобрать. Разборку генератора производить только в специальной мастерской, располагающей необходимыми инструментами и измерительными приборами. Внимательно осмотреть шарикоподшипники. При наличии дефекта шарикоподшипники заменить. Собрать генератор и проверить электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отвернуть два винта крепления щеткодержателя и аккуратно снять его с генератора.
- 2. Отвернуть четыре винта и снять крышку со стороны контактных колец вместе со статором.
- 3. Отвернуть три гайки крепления выводов статора к выпрямительному блоку, статор отделить от крышки.

- 4. Отвернуть гайку крепления шкива и снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 5. Снять с вала ротора крышку со стороны привода при помощи пресса.

Сборку генератора производить в порядке, обратном разборке.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 74. При этом питание обмотки возбуждения осуществляется от постороннего источника постоянного тока напряжением 28 В и устанавливается по вольтметру PV3.

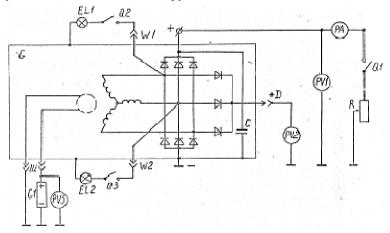


Рис. 74. Схема для проверки электрических характеристик: G – генератор; G1 – аккумуляторная батарея; C – конденсатор 2,2 мк Φ ; R – сопротивление; PV1, PV2, PV3 – вольтметры; PA – амперметр; Q1-Q3 – выключатели; «+D» – клемма дополнительных диодов; W1, W2 – выводы фаз; EL1, EL2 – контрольные лампы; «Ш», «+», «-» – выводы генератора

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора 1702.3771».

При проверке выключатели Q2 и Q3 размыкаются, а выключатель Q1 замыкается при проверке с нагрузкой. При испытании без нагрузки и с нагрузкой частота вращения ротора

постепенно повышается, пока напряжение по вольтметру PV1 не достигнет значения 28 В. При испытании с нагрузкой устанавливается требуемая величина тока нагрузки по амперметру PA, после чего замеряется частота вращения ротора.

ΓΕΗΕΡΑΤΟΡ 6582.3701-03

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При каждом ТО-2 проверить надёжность крепления генератора к двигателю, натяжение ремня и соединение проводов с выводами генератора.

После каждых 150000 км пробега необходимо:

- 1. Снять щеткодержатель в сборе с регулятором напряжения, очистить его от пыли и грязи.
- 2. Проверить высоту щеток в нерабочем положении и давление щеточных пружин. Выступание щетки из канала щеткодержателя должно быть не менее 5 мм, а давление пружин должно соответствовать указанному в технической характеристике генератора. При необходимости щетки заменить.
- 3. Проверить состояние контактных колец генератора. В случае необходимости проточки контактных колец снять генератор с двигателя, очистить его от пыли и грязи и разобрать. Минимально допустимый диаметр проточки контактных колец 29,3 мм.
- 4. Внимательно осмотреть подшипники, в случае обнаружения дефекта заменить их.
- 5. Собрать генератор.
- 6. Проверить электрические параметры.

ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГЕНЕРАТОРА

Проверка генератора на двигателе с помощью вольтметра заключается в следующем:

– при включенной аккумуляторной батарее, установите частоту вращения двигателя 1500...1700 мин⁻¹, подключите вольтметр между "+" и не закрашенным местом корпуса генератора, а также аккумуляторной батарее. Напряжение должно быть в пределах 27,3–29,1 В. Если разница в показаниях при измерении напряжения на генераторе и аккумуляторной батарее около 1,5 В, то необходимо внимательно осмотреть силовую цепь, обратив внимание на клеммовые соединения. Слабые соединения затянуть, зачистить контактирующие поверхности.

В условиях повседневной эксплуатации проверка осуществляется по указателю напряжения, расположенному на щитке приборов, для этого:

- остановить двигатель, не отключая потребители. Стрелка указателя напряжения должна показывать «разряд»;
- при оборотах 1000 мин⁻¹ стрелка должна показывать «заряд».
- если напряжение значительно отличается, то генератор необходимо снять с двигателя и проверить его неисправность с разборкой.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ. РАЗБОРКУ ГЕНЕРАТОРА ПРОИЗВОДИТЬ ТОЛЬКО В СПЕЦИАЛЬНОЙ МАСТЕРСКОЙ, РАСПОЛАГАЮЩЕЙ НЕОБХОДИМЫМИ ИНСТРУМЕНТАМИ И ИЗМЕРИТЕЛЬНЫМИ ПРИБОРАМИ.

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отсоединить провод со штекером от вывода «Д».
- 2. Отвернуть два винта крепления щеткодержателя и аккуратно снять его с генератора.
- 3. Отвернуть три стяжных винта и снять крышку со стороны контактных колец вместе со статором.

- 4. Отвернуть три гайки крепления фазных выводов статора к выпрямительному блоку, статор отделить от крышки.
- 5. Отвернуть гайку крепления шкива и снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 6. Снять с вала ротора крышку со стороны привода вместе с подшипником.

Сборку генератора производить в порядке, обратном разборке. При сборке и разборке генератора пользоваться съемником и приспособлениями.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 75.

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора 6582.3701-03».

При проверке выключатели Q1 и Q2 замкнуты, а выключатель Q3 разомкнут (при положении посезонной регулировки «лето».

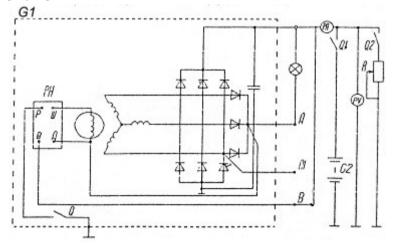


Рис. 75. Схема для проверки электрических характеристик: G1 – генератор; G2 – аккумуляторная батарея; PA – амперметр; PV1 – вольтметр; R – сопротивление нагрузки; С – конденсатор; Q1, Q2 – выключатели; PH – регулятор напряжения; Q – переключатель посезонной регулировки; HL – контрольная лампа; «Л1», «+», «В», «D» – выводы генератора

ΓΕΗΕΡΑΤΟΡ Γ273Β2

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

При ежедневном ТО проверять работу генератора по показаниям контрольной лампы и указателю тока заряда аккумуляторной батареи. При запуске двигателя контрольная лампа должна загораться, а после пуска двигателя – погаснуть.

При каждом ТО-2 проверить надежность крепления генератора к двигателю, натяжение ремней и соединение проводов с выводами генератора.

После каждых 50000 км пробега автомобиля необходимо:

- 1. Снять щеткодержатель в сборе с регулятором напряжения, очистить его от пыли и грязи.
- 2. Проверить высоту щеток в нерабочем положении и давление щеточных пружин. Выступание щетки из канала щеткодержателя должно быть не менее 5 мм, а давление пружин должно соответствовать указанному в технической характеристике генератора. При необходимости щетки заменить.
- 3. Проверить состояние контактных колец генератора. В случае необходимости проточки контактных колец снять генератор с двигателя, очистить его от пыли и грязи и разобрать. Минимально допустимый диаметр проточки контактных колец 29,3 мм.
- 4. Внимательно осмотреть подшипники, в случае обнаружения дефекта заменить их.
- 5. Собрать генератор.
- 6. Проверить электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРНОЙ УСТАНОВКИ

ВНИМАНИЕ! ПОЛНАЯ РАЗБОРКА ГЕНЕРАТОРА ДО ИСТЕЧЕНИЯ ГАРАНТИИ ЗАПРЕЩАЕТСЯ. БЕЗ КРАЙНЕЙ НЕОБХОДИМОСТИ ЛЮБАЯ РАЗБОРКА НЕ РЕКОМЕНДУЕТСЯ. РАЗБОРКУ ГЕНЕРАТОРА ПРОИЗВОДИТЬ ТОЛЬКО В СПЕЦИАЛЬНОЙ МАСТЕРСКОЙ, РАСПОЛАГАЮЩЕЙ НЕОБХОДИМЫМИ ИНСТРУМЕНТАМИ И ИЗМЕРИТЕЛЬНЫМИ ПРИБОРАМИ

Снять генераторную установку с двигателя, очистить от пыли и грязи и разобрать в следующем порядке:

- 1. Отвернуть верхнюю гайку крепления вывода «+» и отсоединить вывод конденсатора.
- 2. Отсоединить провод со штекером от щеткодержателя.
- 3. Отвернуть два винта крепления щеткодержателя к крышке и аккуратно снять его с генератора.
- 4. Отвернуть четыре стяжных винта и снять крышку со стороны контактных колец вместе со статором.
- 5. Отвернуть три гайки крепления фазных выводов статора к выпрямительному блоку, статор отделить от крышки.
- 6. Отвернуть гайку крепления шкива.
- 7. Снять шкив и вентилятор. Извлечь шпонку и снять упорную втулку.
- 8. Снять крышку со стороны привода вместе с подшипником с вала ротора.

Сборку генератора производить в обратной последовательности. При необходимости отделения выпрямительного блока от крышки, отвернуть гайку крепления вывода «+», три винта крепления блока к крышке и разъединить вывод блока со штекером колодки.

При разборке и сборке генератора пользоваться съемником и приспособлениями.

ПРОВЕРКА ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ

Проверку электрических параметров производить на универсальном стенде по схеме, приведенной на рис. 76.

Генератор должен соответствовать данным, указанным в разделе «Техническая характеристика генератора Γ 273B2».

При проверке выключатели Q1 и Q2 замкнуты, а выключатель Q3 разомкнут (при положении посезонной регулировки «лето»).

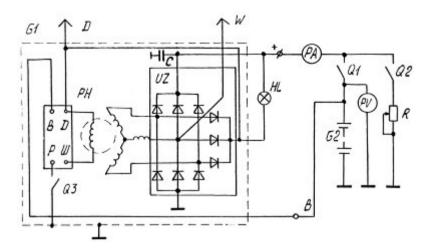


Рис. 76. Схема для проверки электрических характеристик: G1 — генератор; G2 — батарея аккумуляторная; UZ — блок БПВ; PH — регулятор напряжения; С — конденсатор; R — сопротивление нагрузки; PA — амперметр; PV — вольтметр; Q1, Q2 — выключатели; Q3 — переключатель посезонной регулировки; HL — лампа контрольная 28B 2 BT; «+», «—», «В», «D» — выводы генератора.

УСТАНОВКА ГЕНЕРАТОРА НА ДВИГАТЕЛЬ

Перед установкой генератора на двигатель выключить выключатель массы.

Генератор устанавливать на двигатель в следующем порядке:

- 1. Вставить палец 6 (рис. 77) в отверстие задней крышки генератора и закрепить гайкой 3 с шайбами 5 и 8.
- 2. Установить генератор на кронштейн 4 так, чтобы палец вошел в разрезное отверстие кронштейна.
- 3. Вставить болт 2 в отверстие передней лапы генератора и ввернуть его в отверстие кронштейна, не затягивая. Валы шкивов передачи должны быть расположены параллельно, а канавки шкивов друг против друга.

- 4. Отрегулировать натяжение ремней привода генератора, после чего надежно закрепить генератор на двигателе (см. раздел «Регулировка двигателя»).
- 5. Надежно присоединить провода к выводам генератора.

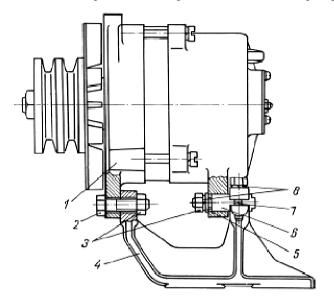


Рис. 77. Крепление генератора на двигателе:

1 – генератор; 2,7 – болты; 8 – гайки; 4 – кронштейн крепления генератора; 5 – шайба; 6 – палец; 8 – пружинная шайба.

CTAPTEP

Периодически проверять надежность присоединения наконечников в электропроводке стартера, очищать наконечники проводов и клеммы аккумуляторной батареи от налетов окислов и грязи.

Разборку и регулировку стартера можно производить только по истечении гарантийного срока в специализированной мастерской, располагающей всеми необходимыми инструментами и измерительными приборами.

Техническое обслуживание стартера производить в указанном ниже объеме:

- 1. Снять стартер с двигателя.
- 2. Снять крышку коллектора и траверсу.
- 3. Осмотреть коллектор, рабочая поверхность которого должна быть гладкой и не иметь подгоревших мест. В случае загрязнения или незначительного подгара коллектор протереть чистой тряпкой, смоченной в бензине. Оставшуюся после этого грязь или подгар зачистить мелкозернистой шлифовальной шкуркой.
- 4. Проверить высоту и состояние щеток. Щетки должны свободно перемещаться в щеткодержателях и не иметь чрезмерного износа. Щетки, изношенные по высоте до 14 мм, заменить. Высоту щетки замерять от места касания пружины до притертой рабочей поверхности.
- 5. Проверить затяжку винтов, крепящих наконечники щеточных канатиков к щеткодержателям; при необходимости подтянуть их.
- 6. Проверить состояние контактной системы реле стартера. При подгорании рабочих поверхностей контактных болтов и диска их следует зачистить мелкозернистой шлифовальной шкуркой, неровности, вызванные подгоранием, не нарушая при этом параллельности контактной поверхности. При значительном износе контактные болты повернуть вокруг оси на 180°, а контактный диск перевернуть на предварительно сторону, поверхность шлифовальной мелкозернистой шкуркой.
- 7. Проверить свободную с качкой посадку контактного диска на штоке якоря реле.

- 8. Проверить надежность крепления реле к корпусу стартера, при необходимости подтянуть крепежные болты и законтрить их замковыми шайбами.
- 9. Вынув пробки, залить в масленки по 10 капель моторного масла (до полной пропитки войлочных фильцев), после чего пробки поставить на место.
- 10. Очистить привод стартера от грязи, шестерню стартера вдвинуть в корпус привода, залить в корпус привода моторное масло, сделать 5–10 движений шестерни вдоль вала, после чего масло вылить. Указанную операцию повторить 2–3 раза и залить масло в корпус привода.

РАЗБОРКА И СБОРКА СТАРТЕРА

- 1. Отвернуть гайки крепления на крышке коллектора.
- 2. Отвернуть гайки с выводных болтов и снять шину.
- 3. Отвернуть и вынуть две стяжные шпильки.
- 4. Снять крышку со стороны коллектора.
- 5. Отвернуть винты крепления щеточных канатиков и, приподняв щеточные пружины, вынуть щетки из щеткодержателей.
- 6. Снять траверсу.
- 7. Отвернуть винты крепления кожуха, отсоединить реле от корпуса и снять его вместе с кожухом.
- 8. Снять корпус вместе с катушками возбуждения.
- 9. Отвернуть шесть винтов и снять крышку привода.
- 10. Вынуть якорь из корпуса привода.
- 11. Вынуть привод из корпуса.
- 12. Отвернуть винты крепления оси рычага и вынуть ось из посадочных отверстий корпуса и рычага.
- 13. Вынуть рычаг.
- 14. Отвернуть винты крепления шайбы и снять шайбу.
- 15. Вынуть сальник из корпуса привода.

Сборку стартера проводить в порядке, обратном разборке.

Перед сборкой смазать шлицы и шейки вала якоря, шайбу между железом якоря и корпусом привода, упорную шайбу смазкой Литол-24 (ГОСТ 21150–87). Вынуть фильцы, при необходимости заменить их и перед закладкой пропитать моторным маслом, применяемым для смазки двигателя.

При необходимости заменить при сборке замковые шайбы, уплотнительные кольца, уплотнительные шайбы и прокладки.

РЕГУЛИРОВКА РЕЛЕ СТАРТЕРА

Плюсовую клемму аккумуляторной батареи соединить с выводным болтом 3 (рис. 78), минусовую клемму–с «массой» стартера. Включатель стартера соединить с клеммой 6 реле стартера. Для контроля замыкания реле подсоединить 24 В лампочку 4.

Поставить прокладку 2 (рис. 79) толщиной 23 мм на вал якоря между шестерней 1 и упорной шайбой 3. Контакты реле при этом должны быть разомкнуты и лампочка не гореть. Снять прокладку и отрегулировать зазор между втулкой привода и упорной шайбой при включенном реле до $1^{+1.5}$ мм.

Зазор регулировать при включенном реле путем поворачивания оси рычага с диском 4; при этом выемка «А» на диске должна быть ниже его горизонтальной оси «Б». Контакты реле должны быть замкнуты, и лампочка 4 (рис. 78) гореть.

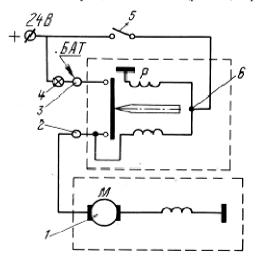


Рис. 78. Схема проверки замыкания контактов реле:

1 — электродвигатель стартера; 2 — клемма подключения перемычки стартера к реле; 3 — выводной болт подключения аккумуляторной батареи к реле; 4 — контрольная лампочка; 5 — выключатель; 6 — клемма подключения провода от выключателя к обмоткам реле

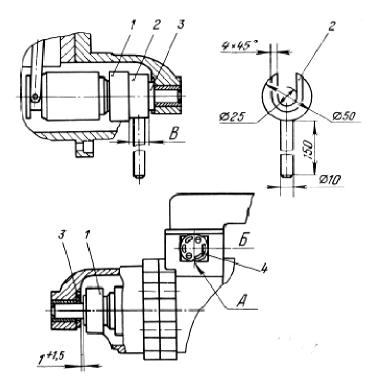


Рис. 79. Проверка замыкания контактов реле стартера: 1 – шестерня стартера; 2 – прокладка; 3 – упорная шайба; 4 – диск оси рычага

УСТАНОВКА СТАРТЕРА НА ДВИГАТЕЛЬ

Установить стартер до упора его фланца в картер маховика так, чтобы направляющий штифт на блоке цилиндров вошел в паз стартера.

Закрепить стартер скобой и затянуть болт крепления скобы моментом 70...90 Н·м (7...9 кгс·м). Для обеспечения установки скобы можно снять соединительную шину.

Для стартеров с фланцевым креплением затяжку трех болтов М12 производить моментом 98,06...122,58 (10...12,5 кгс·м).

ОБСЛУЖИВАНИЕ ЭЛЕКТРОФАКЕЛЬНОГО УСТРОЙСТВА

Техническое обслуживание ЭФУ проводить при подготовке двигателя к зимней эксплуатации в связи с переводом двигателя с летних сортов топлива на зимние, а также с необходимостью проверки технических параметров основных изделий ЭФУ (факельной штифтовой свечи и электромагнитного клапана):

- 1. ЭФУ снять с двигателя.
- 2. Параметры для проверки факельной штифтовой свечи:
 - При номинальном напряжении 19 В, ток через минуту после включения должен быть 11,0-11,8 А.
 - Пропускная способность жиклера свечи должна быть 440 см³/мин при давлении подаваемого воздуха 145 кПа (1,5 кгс/см²) и температуре 20°±5°С.
- 3. Параметры для проверки электромагнитного клапана:
 - При номинальном напряжении 24 В потребляемая мошность не более 48 Вт:
 - Напряжение срабатывания (открытия) клапана 9-15 В;
 - Напряжение отпускания (закрытия) клапана не более 6 В;
 - Ток, потребляемый обмоткой электромагнита, при напряжении срабатывания 12В и температуре окружающего воздуха 20°С должен быть 0,8-1,1 А;
 - Пропускная способность клапана не менее 3,5 л/час. Клапан должен быть герметичным при давлении воздуха 150 кПа (1,5 кгс/см²).
- 4. Топливные трубки в системе продуть сжатым воздухом под давлением 97 кПа (1 кгс/см²). В обоих направлениях воздух должен проходить свободно. Кроме того трубки проверить на герметичность воздухом под давлением 485 кПа (5 кгс/см²). Внутренняя полость трубок должна быть чистой.

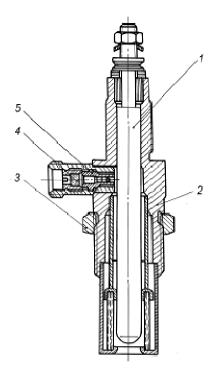


Рис. 80. Факельная штифтовая свеча:

1 – накальный штифт; 2 – корпус свечи в сборе; 3 – контргайка; 4 – фильтр; 5 – дозирующая вставка

- 5. Если при проверке изделия укладываются в требования ТУ, то они должны быть вновь установлены на двигатель. При наличии отклонений по электрическому сопротивлению свечи произвести ее замену.
 - В случае уменьшения пропускной способности свечи вывернуть фильтр 4 (рис. 80), вынуть дозирующую вставку 5, промыть их в неэтилированном бензине или этиловом спирте и продуть сжатым воздухом. Затем установить и вновь проверить пропускную способность свечи.
- 6. Установить изделия ЭФУ на двигатель. При установке подключение топливопровода от ТНВД к электромагнитному клапану производить с учетом направления стрелки, выбитой на корпусе клапана.

Факельную штифтовую свечу при установке законтрить контргайкой. Тщательно закрепить электромагнитный клапан и надежно подтянуть соединения топливопроводов. Проверить и при необходимости затянуть все соединения электропитания ЭФУ, проверить надежность штекерных соединений.

- 7. После установки ЭФУ на автомобиль прокачать топливную систему ЭФУ и проверить ее герметичность, для чего при работающем двигателе нажать кнопку включения ЭФУ и удерживать ее в течение 30 секунд после загорания контрольной лампочки. Подтекание топлива в соединениях системы не допускается.
- 8. Проверить исправность электросхемы ЭФУ. Проверка исправности электрической цепи включает в себя проверку предварительного разогрева свечей, нагрева свечи через сопротивление при сопровождении работы двигателя работой ЭФУ. Предварительный нагрев свечей оценивать по силе тока, потребляемого свечей, и по величине напряжения, подводимого к свечи. Сила тока, потребляемая свечей, составляет около 23 А, напряжение около 19 В.

Убедиться в автоматическом отключении генераторной установки во время работы ЭФУ. Если ток, потребляемый свечей, и напряжение, подводимое к свече, имеют те же значения, что и в период предварительного нагрева, значит автоматическое отключение генераторной установки работает исправно.

ВНИМАНИЕ! ПРИ ВОЗНИКНОВЕНИИ НЕОБХОДИМОСТИ ЗАМЕНЫ ОДНОЙ СВЕЧИ ЗАМЕНЯТЬ ОБЕ ОДНОВРЕМЕННО.

ТЕКУЩИЙ РЕМОНТ ДВИГАТЕЛЕЙ

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ ДВИГАТЕЛЯ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Причина неисправности

Способ устранения

ДВИГАТЕЛЬ НЕ ПУСКАЕТСЯ

Прежде чем искать причины затрудненного пуска двигателя, проверить, есть ли топливо в баке и открыт ли кран всасывающего топливопровода

Стартер не проворачивает коленчатый вал или вращает его очень медленно Проверить степень зарядки и исправность аккумуляторных батарей и, если необходимо, зарядить или заменить их

Проверить контакты в цепи питания стартера, при необходимости очистить и затянуть клеммы проводов

Проверить состояние контактов реле стартера, при наличии подгара зачистить контакты

Проверить контакты щеток стартера с коллектором и отсутствие заедания щеток В щеткодержателях, если необходимо, протереть и зачистить коллектор, очистить боковые грани щеток, заменить изношенные шетки новыми или заменить неисправные щеточные пружины

Если невозможно устранить дефекты, заменить стартер

Причина неисправности	Способ устранения	
Засорены топливопроводы или заборник в топливном баке	Промыть заборник, промыть и продуть топливопроводы	
Замерзание воды в топливопроводах или на сетке заборника топливного бака	Осторожно прогреть топливные трубки, фильтры и бак	
Загустение топлива в топливопроводах	Заменить топливо другим, соответствующим сезону и прокачать систему	
Засорение фильтрующих элементов топливных фильтров	Заменить фильтрующие элементы	
Неправильный угол опережения впрыски- вания топлива	Отрегулировать угол опережения впрыскивания топлива	
Наличие воздуха в топливной системе	Прокачать систему, устранить негерметичность	
Не работает топливо- подкачивающий насос	Разобрать насос и устранить неисправности	
Заедание рейки топливного насоса высокого давления в нулевой подаче	Отремонтировать топливный насос в мастерской или заменить исправным	
Затрудненное перемещение рейки ТНВД из-за загустевания смазки	Осторожно прогреть топливный насос	
Негерметичен перепуск- ной клапан ТНВД	Промыть или заменить клапан	
ДВИГАТЕЛЬ НЕ РАЗВИВАЕТ МОЩНОСТИ		
Загрязнение воздушных фильтров	Очистить воздушные фильтры	
Засорение выпускного тракта	Прочистить выпускной тракт	

Причина неисправности	Способ устранения		
Загрязнение фильтрующих элементов топливных фильтров	Заменить фильтрующие элементы		
Рычаг управления регулятором не доходит до болта максимальных оборотов. Рычаг останова не доходит до крайнего рабочего положения	Проверить и отрегулировать систему рычагов привода		
Наличие воздуха в топливной системе	Прокачать систему питания топливом и устранить		
Неправильный угол опережения впрыски- вания топлива	Отрегулировать угол опережения впрыскивания топлива		
Неплотность прилегания клапанов газораспределения	Отрегулировать тепловые зазоры в клапанном механизме, при необходимости притереть клапаны		
Низкое давление нагнетаемого воздуха	Негерметична система подачи воздуха. Устранить негерметичность		
	При повышенном сопротивлении выпускного трубопровода очистить выпускной трубопровод.		
	Неисправен турбокомпрессор. Сдать в ремонт		
Нарушение регулировки или засорение форсунок	Отрегулировать форсунки и, если необходимо, промыть и прочистить их		
Неисправность клапанов топливоподкачивающего насоса	Промыть гнезда и клапаны насоса, при необходимости притереть клапана		
Поломка пружин толкателей топливного насоса высокого давления	Заменить пружины и отрегу- лировать насос на стенде в специальной мастерской		

Причина неисправности	Способ устранения
Поломка пружин или негерметичность нагнетательных клапанов топливного насоса	Заменить пружину или устранить негерметичность клапана (проводить в специальной мастерской)
Износ поршневых колец	Заменить поршневые кольца, при необходимости, поршни и гильзы цилиндров

ДВИГАТЕЛЬ СТУЧИТ

Ранний впрыск топлива в цилиндры	Отрегулировать угол опережения впрыскивания топлива		
Разрегулированы зазоры	Отрегулировать тепловые зазоры в		
в клапанном механизме	клапанном механизме		

НЕРАВНОМЕРНАЯ РАБОТА ДВИГАТЕЛЯ

Ослаблено крепление или лопнула трубка высокого давления	Подтянуть крепление или заменить трубку		
Нарушена равномер- ность подачи топлива секциями насоса высокого давления	Отрегулировать подачу на специальном стенде		
Неудовлетворительная работа отдельных форсунок	Снять форсунки и проверить в мастерской, при необходимости отремонтировать или заменить неисправные форсунки		
Неисправность регулятора числа оборотов	Устраняется в специальной мастерской		

ПОНИЖЕННОЕ ДАВЛЕНИЕ МАСЛА В СИСТЕМЕ СМАЗКИ

Прежде, чем искать причину неисправности, убедитесь в наличии достаточного количества масла в поддоне

Загрязнение фильтрую-	Сменить фильтрующие	элементы
щего элемента масля-		
ного фильтра (загорание лампочки)		

Причина неисправности	Способ устранения	
Неисправен манометр	Заменить манометр исправным	
Засорение заборника масляного насоса	Снять поддон, промыть заборник	
Засорение или неисправность редукционного или дифференциального клапанов масляного насоса	Разобрать, промыть и собрать клапан. При поломке пружины заменить ее и отрегулировать клапан на стенде	
Негерметичность соединений маслопроводов	Проверить соединения и прокладки фильтров и трубок. Если необходимо, подтянуть соединения или заменить прокладки	
Разжижение масла вследствие попадания топлива	Проверить герметичность соединений дренажного трубопровода, трубок высокого давления форсунки под крышками головок цилиндров и устранить течь	
Увеличение зазоров в коренных и шатунных подшипниках коленчатого вала в результате износа или разрушения вкладышей	Заменить вкладыш подшипников коленчатого вала, при необходимости прошлифовать шейки вала	

ПОВЫШЕННАЯ ТЕМПЕРАТУРА ЖИДКОСТИ В СИСТЕМЕ ОХЛАЖДЕНИЯ

Прежде, чем искать причину неисправности, убедиться в наличии достаточного количества охлаждающей жидкости

Ослабление натяжения	Отрегулировать натяжение ремня
ремня привода водяного	
насоса	
Износ ремня водяного	Заменить ремень
насоса	
Нарушение герметичнос-	Устранить неисправность
ти жидкостного тракта	
системы охлаждения	

Причина неисправности	Способ устранения	
Разрыв прокладки пробки радиатора	Заменить прокладку	
Неисправны термостаты	Заменить термостаты	
Загрязнение радиатора	Очистить радиатор	
Не включается вентилятор	Проверить положение рычага включения вентилятора и установить его в положение «В». Если вентилятор не включился неисправен включатель	
Неисправен включатель муфты вентилятора	Заменить термосиловой датчик ТС-103 (см. рис. 39, поз. 12)	
Не выключается вентилятор	Установить выключатель в положение «О». Если вентилятор не выключился закоксованы дренажные отверстия в приводе вентилятора. Отремонтировать или заменить привод	

В СИСТЕМУ СМАЗКИ ПОПАДАЕТ ВОДА

Подтекание по резиновым кольцам гильз цилиндров	Заменить неисправные уплотнительные кольца	
Разрушение уплотни- тельной прокладки головки цилиндров	Заменить неисправную прокладку	
Нарушение герметичности жидкостно-масляного теплообменника	Снять теплообменник с двигателя и устранить подтекание	
Нарушение герметичности уплотнительной прокладки головки цилиндров пневмокомпрессора	Заменить прокладку	

ПОСТОРОННИЕ ШУМЫ В ТУРБОКОМПРЕССОРЕ

Задевание	ротора	за	Снять	турбокомпрессор	для
неподвижнь	ые детали		ремонта	или замены	

УКАЗАТЕЛЬ ТОКА ПОКАЗЫВАЕТ РАЗРЯДНЫЙ ТОК ПРИ НОМИНАЛЬНОЙ ЧАСТОТЕ ВРАЩЕНИЯ КОЛЕНЧАТОГО ВАЛА ДВИГАТЕЛЯ

Проскальзывание приводных ремней

Неисправность в проводке или контактных присоединениях к генератору и регулятору

Щетки заедают н щеткодержателе

Загрязнены или замаслены контактные кольца генератора

Щетки изношены

Отпайка проводов от колец или обрыв катушки возбуждения

Неисправность (пробой или обрыв) диодов выпрямительного блока

Неисправен регулятор напряжения

Неисправна аккумуляторная батарея

Обрыв или короткое замыкание в обмотке статора

Натянуть ремни, убедившись в исправности шарикоподшипников Устранить неисправность

Отвернуть винты щеткодержателя и очистить щетки и щеткодержатель

Протереть кольца тряпкой, смоченной в бензине, если удалить загрязнение не удается - зачистить мелкозернистой наждачной бумагой и вторично протереть

Заменить щетки

Припаять провод, при обрыве - заменить ротор

Проверить и при необходимости заменить выпрямительный блок

Заменить регулятор напряжения

Проверить и в случае необходимости заменить аккумуляторную батарею

Проверить обмотки статора. При обрыве или замыкании заменить статор

Способ устранения

ЧРЕЗМЕРНО БОЛЬШОЙ ЗАРЯДНЫЙ ТОК (АМПЕРМЕТР ЗАШКАЛИВАЕТ)

Неисправен регулятор напряжения

Заменить регулятор напряжения

Замыкание клеммы «Ш» (шунтового провода) генератора или регулятора на массу

Устранить замыкание

ШУМ ИЛИ СТУК В ГЕНЕРАТОРЕ

Изношены или разрушены детали подшипника

Заменить дефектный подшипник

Наличие в генераторе постороннего предмета

Удалить посторонний предмет

Погнут вентилятор

Выправить погнутые места вентилятора

Чрезмерное натяжение или износ приводных ремней

Отрегулировать натяжение ремней и устранить перекос

ПОДШИПНИКИ ГЕНЕРАТОРА ПЕРЕГРЕВАЮТСЯ

Чрезмерное натяжение приводных ремней

натяжение | Ослабить натяжение ремней

ПРИ ВКЛЮЧЕНИИ СТАРТЕР МЕДЛЕННО ПРОВОРАЧИВАЕТ КОЛЕНЧАТЫЙ ВАЛ

Разряжена или неисправна аккумуляторная батарея Зависание щеток, подгар коллектора Зарядить или сменить аккумуляторную батарею

Провести профилактику щеточно-коллекторного узла

Причина неисправности

Способ устранения

СТАРТЕР НЕ РАБОТАЕТ (ПРИ ЕГО ВКЛЮЧЕНИИ СВЕТ ФАР НЕ СЛАБЕЕТ)

Отсутствие контакта щеток с коллектором

Протереть коллектор тряпкой, смоченной в бензине или очистить коллектор стеклянной шкуркой. Очистить боковые грани щеток или заменить щетки новыми. Проверить состояние щеточных пружин и в случае их неисправности - заменить. Проверить нет ли заедания щеток в щеткодержателях

Обрыв цепи питания или неисправность в проводке

Проверить цепь стартера и устранить неисправность

РЕЛЕ РАБОТАЕТ С ПЕРЕБОЯМИ (ВКЛЮЧАЕТ СТАРТЕР И СЕЙЧАС ЖЕ ВЫКЛЮЧАЕТ)

Разряжена аккумуляторная батарея

Зарядить или заменить аккумуляторную батарею

Обрыв удерживающей обмотки реле

Заменить реле

ПРИ ВКЛЮЧЕНИИ СТАРТЕРА СЛЫШЕН ХАРАКТЕРНЫЙ СКРЕЖЕТ МЕТАЛЛА

Забиты зубья шестерни стартера или венца маховика и шестерня не входит в зацепление

Заменить неисправные детали

Ослабло крепление стартера к двигателю

Подтянуть болты крепления стартера

Нарушена регулировка реле Отрегулировать реле стартера

СТАРТЕР РАБОТАЕТ, НО НЕ ПРОВОРАЧИВАЕТ КОЛЕНЧАТЫЙ ВАЛ ДВИГАТЕЛЯ

Поломка зубьев шестерни стартера или венца маховика

Заменить неисправные детали

Причина неисправности	Способ устранения
Вышел из строя привод	Заменить привод

ПРИ ВКЛЮЧЕНИИ ЭФУ НА РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ПРОГРЕВА СТРЕЛКА АМПЕРМЕТРА НА ЩИТКЕ ПРИБОРОВ НЕ ОТКЛОНЯЕТСЯ

Разрыв электрической цепи питания факельных штифтовых свечей из-за отсутствия контакта в проводах или перегорания спиралей обеих свечей

Включить ЭФУ на режим работы предварительного прогрева, проверить наличие напряжения между клеммой свечи и массой При наличии напряжения заменить свечи. При отсутствии напряжения проверить всю цепь и подтянуть контакты проводов

ПРИ ВКЛЮЧЕНИИ ЭФУ НА РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ПРОГРЕВА СТРЕЛКА АМПЕРМЕТРА НА ЩИТКЕ ПРИБОРОВ ПОКАЗЫВАЕТ ПОЧТИ ВДВОЕ МЕНЬШИЙ ТОК РАЗРЯДА ПО СРАВНЕНИЮ С НОРМАЛЬНОЙ РАБОТОЙ ЭФУ

Перегорание спирали накального элемента в одной из факельных штифтовых свечей

Проверить сопротивление факельных штифтовых свечей. При обнаружении неисправной свечи заменить обе свечи

ПРИ ВКЛЮЧЕНИИ ЭФУ НА РЕЖИМ ПРЕДВАРИТЕЛЬНОГО ПРОГРЕВА СТРЕЛКА АМПЕРМЕТРА НА ЩИТКЕ ПРИБОРОВ УКАЗЫВАЕТ БОЛЬШОЙ ТОК РАЗРЯДА ПО СРАВНЕНИЮ С НОРМАЛЬНОЙ РАБОТОЙ ЭФУ

Замыкание спирали накального элемента факельной штифтовой свечи на штифт Проверить сопротивление факельных штифтовых свечей. При обнаружении неисправной свечи заменить ее

ПРИ ПРОВЕРКЕ РАБОТЫ ЭФУ ОТСУТСТВУЕТ ФАКЕЛ ВО ВПУСКНОМ ТРУБОПРОВОДЕ ДВИГАТЕЛЯ

Недостаточная частота вращения двигателя (менее 50 об/мин) из-за низкой температуры масла в двигателе или низкой температуры электролита аккумуляторных батарей, а также большой степени их разряда

Неисправность электрической цепи

Неисправность в системе питания топливом

Проверить частоту вращения двигателя. При скорости менее 50 об/мин заменить аккумуляторные батареи или прогреть двигатель предпусковым подогревателем

Проверить электрическую схему ЭФУ и устранить неисправность

Проверить герметичность топливной системы двигателя по отсечке топлива путем прокачки ручным подкачивающим насосом или проверкой герметичности системы подключением c манометра. После прокачки до давления открытия перепускного ТНВД клапана на двухминутной выдержки давление в системе не должно быть ниже 0.1 кгс/см^2 . Если давление ниже, проверить работоспособность клапанов на ФТОТ и ТНВД

ОСОБЕННОСТИ РАЗБОРКИ И СБОРКИ ДВИГАТЕЛЯ

ДЕМОНТАЖ И МОНТАЖ ГОЛОВКИ ЦИЛИНДРОВ

Головку цилиндров снимать только для устранения неисправностей деталей цилиндро-поршневой группы, прокладки головки цилиндров, клапанов или для замены самой головки.

Снимать головку цилиндров в следующем порядке:

- Слить охлаждающую жидкость из системы охлаждения лвигателя.
- 2. Отсоединить от головки все трубопроводы, защитить их внутренние полости от попадания пыли и грязи.
- 3. Снять крышку головки цилиндров.
- 4. Отвернуть гайки скоб крепления форсунок (рис. 81), снять форсунки (рис. 82), предохраняя распылитель от ударов и засорения отверстий.
- 5. Отвернуть гайки крепления осей коромысел, снять оси коромысел в сборе с коромыслами и извлечь штанги.

Рис. 81.Отвертывание гайки скобы крепления форсунки



Рис. 82. Снятие форсунки

6. Отвернуть гайки шпилек крепления головки цилиндров (рис. 83), соблюдая последовательность, обратную затяжке (рис. 54), не менее чем за три приема:

I прием - до 147...118 H·м (15...12 кгс·м)

II прием - до 49...39 Н·м (5...4 кгс·м)

III прием - вывернуть гайки.

- 7. Снять головку цилиндров с двигателя и осмотреть ее состояние.
- 8. Если необходимо, осторожно снять прокладку головки цилиндров.
- 9. Проверить состояние гильз цилиндров и закрыть цилиндровые отверстия, чтобы предохранить их от попадания пыли и грязи.

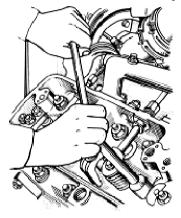


Рис. 83. Отвертывание гаек крепления головки цилиндров

Установку головки цилиндров на двигатель производить в обратном порядке. Перед установкой протереть чистой ветошью привалочные плоскости блока цилиндров, бурта цилиндров и головки цилиндров. Повторное использование металлической прокладки головки цилиндров допускается с той же головкой цилиндров только при неизменном положении гильз в блоке цилиндров и при отсутствии следов прорыва газов в зоне газового стыка. Повторное использование резиновой прокладки и уплотнителей возможно только при отсутствии трешин. повреждений, затвердевания. Обратить внимание правильность установки резиновой прокладки и уплотнителей.

Резьба должна быть смазана чистым моторным маслом.

Гайки крепления шпилек головок цилиндров затягивать на холодном двигателе в порядке возрастания номеров, как показано на рис. 54, не менее чем за три приема:

```
І прием - 39...49 Н·м (4...5 кгс·м);

II прием - 118...147 Н·м (12...15 кгс·м);

III прием - 216...235 Н·м (22...24 кгс·м).
```

После затяжки повторной операцией проверить требуемый крутящий момент на каждой гайке, соблюдая указанную последовательность. Нельзя затягивать гайки моментом большим, чем указано, так как это неизбежно приведет к разрушению деталей, а герметичность уплотнения не улучшится.

ПРИТИРКА КЛАПАНОВ

Перед разборкой головок цилиндров очистить их от масла и нагара и пометить порядковые номера клапанов на торцах тарелок для того, чтобы при сборке установить их на свои места.

рассухаривания клапанов Для необходимо головку цилиндров без форсунок, коромысел, осей коромысел и шпилек осей коромысел установить крепления привалочной поверхностью на плиту так, чтобы обеспечить упор для клапанов. Рассухаривание выполнять помощью приспособления, c изображенного на рис. 84. Для этой цели ввернуть упорный болт 1 приспособления в отверстие под шпильку крепления оси коромысла, нажимную тарелку 2 приспособления установить на тарелку пружин соответствующего клапана и, нажимая на рукоятку 3 рычага приспособления, отжать пружины клапана, вынуть сухари и снять все детали клапанного узла. Таким же путем последовательно рассухарить все остальные клапаны и снять пружины клапанов и сопряженные с ними детали.

Повернуть головку цилиндров и вынуть клапаны из направляющих втулок. Клапаны и седла тщательно очистить от грязи, нагара и масляных отложений, промыть в керосине или специальном моющем растворе, высушить и осмотреть для определения степени ремонта. Восстановить герметичность клапана притиркой возможно только при наличии незначительных износов и мелких раковин на рабочей фаске и лишь в том случае, если тарелка и стержень не покороблены и нет местных прогаров на фасках клапана и седла.

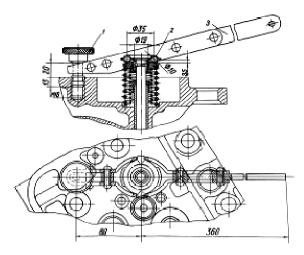


Рис. 84. Приспособление для снятия и установки клапанов газораспределения:

1 – упорный болт; 2 – нажимная тарелка; 3 – рукоятка

При наличии таких дефектов притирке должны предшествовать шлифовка седел и клапанов или замена неисправных деталей новыми.

Для притирки клапанов использовать специальную притирочную пасту, приготовленную путем тщательного перемешивания трех частей (по объему) микропорошка зеленого карбида кремния с двумя частями моторного масла и одной частью дизельного топлива. Перед употреблением притирочную смесь тщательно перемешать, так как при отсутствии механического перемешивания микропорошок способен осаждаться.

Установить головку цилиндров на плиту или специальное приспособление привалочной поверхностью кверху. Нанести на фаску клапана тонкий равномерный слой притирочной пасты, смазать стержень клапана чистым моторным маслом и установить его в головку цилиндров. Допускается наносить пасту на фаску седла. Притирку выполнять возвратно-вращательными движениями клапанов при помощи специального приспособления или дрели с присосом. Нажимая на клапан с усилием 20...30 Н (2...3 кгс), повернуть его на 1/3 оборота в одном направлении, затем, ослабив усилие, на 1/4 оборота в обратном направлении. Нельзя выполнять притирку круговыми движениями.

Периодически поднимая клапан и добавляя на фаску пасту, продолжать притирку, как указано выше, до тех пор, пока на фасках клапана и седла не появится непрерывный матовый поясок шириной «А» не менее 1,5 мм (рис. 85). Разрывы матового пояска и наличие на нем поперечных рисок не допускается. При правильной притирке матовый поясок «А» на фаске клапана седле должен начинаться у большего основания конуса, как показано на рисунке 85.

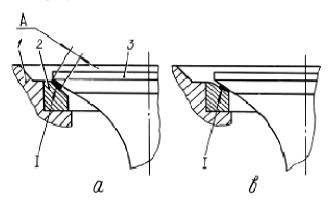


Рис. 85. Расположение матового пояска на фаске клапана:

- а правильное; в неправильное; 1 головка цилиндров;
- 2 седло; 3 клапан

После окончания притирки клапаны и головку цилиндров тщательно промыть керосином или специальным моющим раствором и высушить.

ВНИМАНИЕ! НАЛИЧИЕ ДАЖЕ НЕЗНАЧИТЕЛЬНЫХ ОСТАТКОВ ПРИТИРОЧНОЙ ПАСТЫ НА КЛАПАНЕ ИЛИ ГОЛОВКЕ ЦИЛИНДРОВ МОГУТ ПРИВЕСТИ К НАТИРУ И УСКОРЕННОМУ ИЗНОСУ ГИЛЬЗ ЦИЛИНДРОВ И ПОРШНЕВЫХ КОЛЕЦ.

Клапаны, пружины и детали их крепления установить на головку цилиндров и засухарить клапаны, используя приспособление (см. рис. 84).

Качество притирки сопряжения клапан-седло проверить на герметичность путем заливки керосина или дизельного топлива, заливая его поочередно во впускные и выпускные каналы. Хорошо притертые клапаны не должны пропускать керосин или дизельное топливо в течение одной минуты.

Допустима проверка качества притирки карандашом. Для этого поперек фаски притертого чистого клапана мягким графитовым карандашом нанести через равные промежутки 10 – 15 черточек, после чего осторожно вставить клапан в седло и, сильно нажимая к седлу, повернуть его на 1/4 оборота. При хорошем качестве притирки все черточки на рабочей фаске клапана должны стереться. При неудовлетворительных качества притирки ee необхолимо результатах проверки продолжить.

ЗАМЕНА ПОРШНЕВЫХ КОЛЕЦ

Для замены поршневых колец предварительно демонтировать поршень с шатуном при снятых головке цилиндров и поддоне. Двигатели оборудованы масляным охлаждением поршней. При демонтаже поршневой группы на указанных двигателях предварительно снять форсунки охлаждения поршней во избежание их поломок. Для более легкого извлечения поршня очистить нагар с верхнего пояса гильзы. Отвернуть болты крепления крышки шатуна, снять крышку и извлечь через цилиндр поршень в сборе с шатуном. Для отсоединения шатуна от поршня вынуть стопорные кольца поршневого пальца, нагреть поршень в масляной ванне до 80°С и извлечь поршневой палец.

Для снятия поршневых колец надеть щипцы (рис. 86) на кольцо, ввести губки 2 щипцов в замок кольца и, сжав до упора рукоятки 3 щипцов, осторожно вывести кольцо из канавки и снять его с поршня (рис. 87).

Установку поршневых колец производить в обратном порядке.

Осторожно очистить поршень от нагара, предохраняя его от повреждений (особенно торцовые поверхности канавок под поршневые кольца).

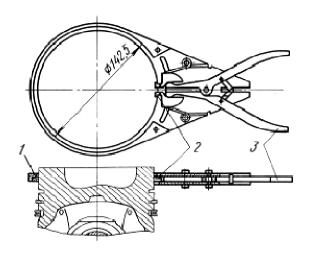


Рис. 79. Щипцы для снятия и надевания поршневых колец: 1 – поршневое кольцо; 2 – губки щипцов; 3 – рукоятка

Рис. 80. Снятие и надевание поршневых колец на поршень

Перед сборкой все детали тщательно промыть, а масляные каналы продуть сжатым воздухом. Сборку поршня с пальцем производить легким нажатием руки, при этом необходимо обильно смазать моторным маслом отверстие в поршне и палец. Не допускается запрессовка пальца в поршень.

Для того, чтобы установить в гильзу цилиндра поршень в сборе с поршневыми кольцами и шатуном, предварительно сжать кольца, утопив их в канавки поршня. Для сжатия колец применять

оправку (рис. 88) с конической внутренней поверхностью и буртиком, позволяющим правильно сцентрировать оправку на гильзе цилиндра. Установив поршень в оправку, осадить его в гильзу цилиндра.

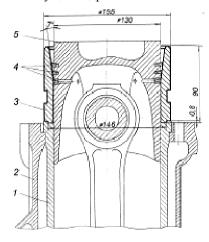


Рис. 88. Оправка для установки поршня в гильзу цилиндра:

1 — гильза цилиндра; 2 — блок цилиндров; 3 — обжимное приспособление; 4 — поршневые кольца; 5 — поршень

При сборке поршня с шатуном и установке их на двигатель выполнять следующие требования:

- 1. Поршень и гильза должны быть одинаковых размерных групп.
- 2. Компрессионные кольца устанавливать клеймом «верх» к днищу поршня.
- 3. Замки соседних поршневых колец развести в противоположные стороны в плоскость поршневого пальна.
- 4. Установить поршень так, чтобы смещенная камера сгорания в поршне была направлена внутрь двигателя, в сторону топливного насоса.
- Клейма спаренности на шатуне и крышке должны быть одинаковыми.
- 6. Грязь, заусеницы и забоины на шлицах шатуна и крышки не допускаются.
- Резьбу и опорные торцы головок болтов крепления крышек шатунов смазать моторным маслом и затянуть в два приема, начиная с длинного болта, сначала моментом 100 Н⋅м (10 кгс⋅м), окончательно моментом 200 – 220 Н⋅м (20 – 22 кгс⋅м).

ОЧИСТКА ПОЛОСТЕЙ ШАТУННЫХ ШЕЕК

При каждом снятии коленчатого вала с двигателя очистить полости шатунных шеек, предварительно удалив заглушки 2 (рис. 89), которыми закрыты полости. Заглушки заменить новыми, их повторное использование не допускается.

Перед установкой заглушек запилить вспучивание металла у кромок отверстий от предыдущей раскерновки, промыть вал и продуть масляные каналы. Заглушки запрессовать на глубину 5–6 мм от кромки отверстия, после чего раскернить внутри отверстия в трех точках, равнорасположенных по окружности, для предотвращения самопроизвольного выпрессовывания заглушек.

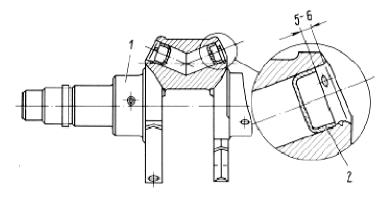


Рис. 89. Заглушки полостей шатунных шеек: 1 – коленчатый вал; 2 – заглушки

УСТАНОВКА КОЛЕНЧАТОГО ВАЛА НА ДВИГАТЕЛЬ

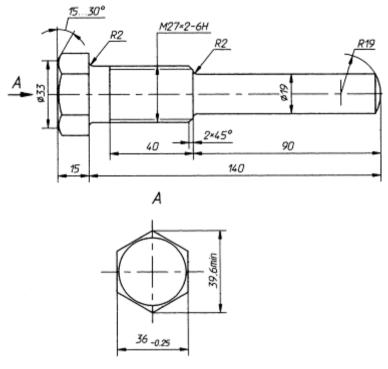
При установке коленчатого вала на двигатель обеспечить соответствие размеров вкладышей подшипников размерам шеек вала (см. таблицу стр. 26).

Перед установкой обеспечить чистоту наружных поверхностей и внутренних полостей коленчатого вала и других сопряженных поверхностей. Смазать шейки и рабочие поверхности чистым моторным маслом.

Для облегчения установки маховика в правильное положение относительно коленчатого вала на ступице маховика нанесена цифра «8» для восьмицилиндровых двигателей, которую при сборке совместить с цифрой «2» на торце коленчатого вала.

Крышки коренных подшипников не взаимозаменяемы; при их установке следить, чтобы клеймо на крышке соответствовало клейму на блоке.

Затяжку крышек коренных подшипников начинать с вертикальных болтов и затягивать в два приема с крутящим моментом после повторной затяжки 430...470 Н·м (43...47 кгс·м), затем затянуть в два приема горизонтальные болты с окончательным моментом затяжки 90...120 Н·м (9...12 кгс·м).


Перед затяжкой заднего упорного коренного подшипника выровнять осевой зазор, для чего, слегка притянув болтами крышку подшипника, перемещать коленчатый вал вперед-назад в осевом направлении до упора при помощи ломика сначала вперед, затем назад, выравнивая положение крышки. Затянув болты, проверить щупом осевой зазор. Он должен быть одинаковым с обеих сторон крышки.

ЗАМЕНА ШЕСТЕРНИ КОЛЕНЧАТОГО ВАЛА

Шестерню коленчатого вала можно заменить без снятия коленчатого вала с двигателя.

Снять шкив привода. Для снятия ступицы со шкивом и гасителем с конического конца коленчатого вала восьмицилиндрового двигателя использовать съемник, показанный на рисунке 90. При снятых шкиве и передней крышке блока передний противовес и шестерню спрессовать с помощью

съемника. Перед установкой шестерню и передний противовес нагреть до температуры $105...155^{\circ}\mathrm{C}$ и последовательно подпрессовывать их до упора с помощью специального приспособления.

Сталь 40X ГОСТ 4543-71 Закалить, отпустить $34...39 \text{ HRC}_{\scriptscriptstyle 3}$

Рис. 90. Съемник ступицы коленчатого вала

РАЗБОРКА И СБОРКА НАСОСНОЙ СЕКЦИИ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ МОДЕЛЕЙ 806 И 807

При ремонте принимать все меры предосторожности для предупреждения попадания пыли и грязи в насос.

Разборку насосной секции производить в указанном ниже порядке.

- 1. Снять боковую крышку и колпак рейки.
- 2. При помощи, специального рычага (рис. 91) сжать пружину толкателя и извлечь нижнюю тарелку толкателя (рис. 92).

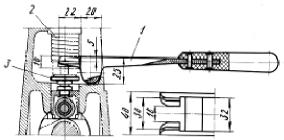


Рис. 91. Рычаг для снятия тарелки толкателя:

1 – рычаг; 2 – пружина толкателя; 3 – тарелка толкателя

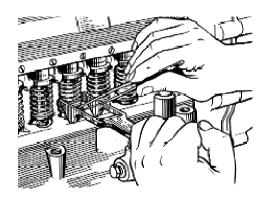
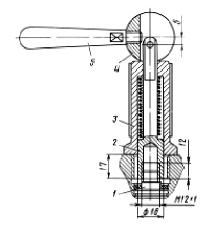



Рис. 92. Снятие тарелки толкателя

3. Снять контрящие сухари, вывернуть штуцеры и специальным съемником (рис. 93) извлечь из корпуса насоса седла вместе с нагнетательными клапанами. Для снятия навернуть оправку 2 съемника на резъбу седла 1 нагнетательного клапана до упора втулки 3 в корпус насоса. Поворачивая эксцентрик съемника вверх, извлечь седло нагнетательного клапана (рис. 94).

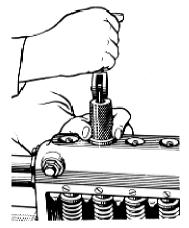


Рис. 93. Съемник седла нагнетательного клапана:
1 – седло нагнетательного клапана;
2 – оправка: 3 – втулка: 4 – экспен-

трик; 5 – рукоятка

Рис. 94. Снятие седла нагнетательного клапана

- 4. Вывернуть стопорные винты втулки плунжера и вынуть плунжерные пары из корпуса насоса.
- 5. Слегка сжав, вынуть пружину из корпуса насоса вместе с верхней тарелкой, поворотной втулкой и зубчатым венцом.
- 6. Снять толкатель из направляющей в корпусе, Насосную секцию собирать в обратном порядке. При сборке обратить внимание на следующее:
- а) нагнетательный клапан с седлом, а также плунжерная пара являются прецизионными парами, и замену каждой из них можно производить только комплектом;
- б) поворотную втулку с зубчатым венцом в сборе устанавливать при среднем положении рейки (по отношению к корпусу насоса) так, чтобы прорезь венца находилась в плоскости оси отверстия под стопорный винт в корпусе насоса, а средний зуб венца в средней впадине на рейке (рис. 95);
- в) при установке плунжерной пары убедиться, что на втулку плунжера надето резиновое уплотнительное кольцо; лыска в нижней части хвостовика плунжера должна быть обращена в сторону стопорного винта втулки;

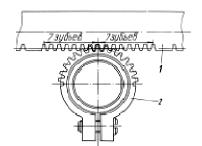


Рис. 95. Установка поворотной втулки с зубчатым венцом

б) после затяжки стопорного винта втулки плунжера проверить подвижность рейки и величину ее хода, который должен быть не менее 25 мм; рейка должна перемещаться легко, без ощутимых затруднений;

д) штуцер затянуть моментом $100 - 120 \text{ H} \cdot \text{м} \ (10 - 12 \text{ кгс·м}),$ после затяжки каждого штуцера проверить перемещение рейки,

После сборки топливный насос с регулятором отрегулировать на стенде.

РАЗБОРКА И СБОРКА ВОДЯНОГО НАСОСА

ПОРЯДОК СНЯТИЯ И РАЗБОРКИ ВОДЯНОГО НАСОСА

- 1. Ослабив крепление натяжного устройства ремня привода водяного насоса снять ремень со шкива водяного насоса.
- 2. Слить с двигателя и радиатора охлаждающую жидкость.
- 3. Снять подводящий патрубок 8 с водяного насоса.
- 4. Отвернув крепление, снять с двигателя водяной насос, аккуратно не повредив прокладку.
- 5. Отвернуть гайки 14 (рис. 96) патрубка 8.
- 6. Слегка постукивая в выступающие части патрубка 8 в направлении стрелок Б, извлечь указанный патрубок из корпуса 1 насоса.
- 7. Зафиксировать крыльчатку 2 (или шкив 10) от вращения с валом 5.
- 8. Вывернуть заглушку 7 из резьбового отверстия крыльчатки 2.

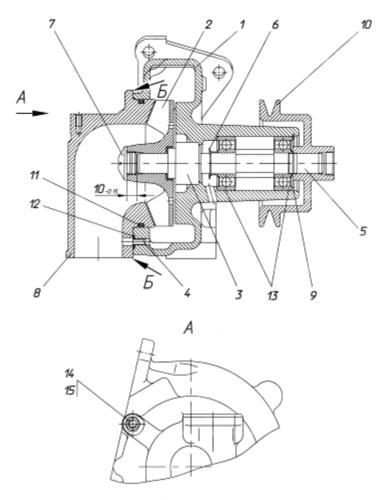


Рис. 96. Водяной насос:

1 — корпус; 2 — крыльчатка; 3 — торцовое уплотнение; 4 — втулка; 5 — вал; 6 — водосбрасыватель; 7 — заглушка; 8 — подводящий патрубок; 9 — стопорное кольцо; 10 — шкив; 11, 12 — уплотнительные кольца; 13 — подшипники; 14, 15 — гайки крепления и пружинные шайбы.

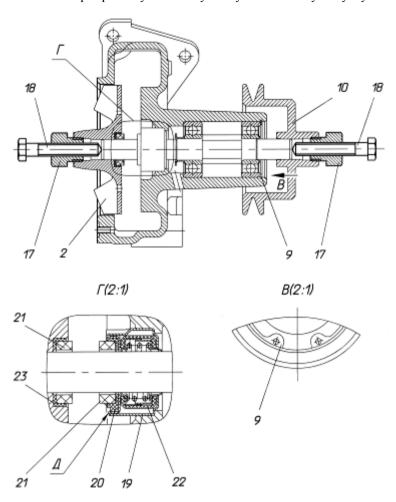
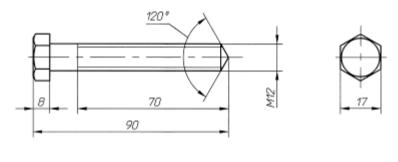
9. Завернуть в резьбовое отверстие (M22x1,5) крыльчатки 2 гайку 17 съемника (рис. 97, 98) и, вворачивая болт 18, спрессовать крыльчатку 2 с вала 5.

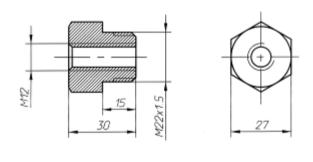
- 10. Отогнуть «усы» Д корпуса 19 торцового уплотнения (рис. 97) и извлечь манжету 20, втулку 21 и манжету 22 с пружиной и каркасами в сборе.
- 11. Используя съемник, спрессовать шкив 10.
- 12. Извлечь из канавки корпуса 1 насоса стопорное кольцо 9.
- 13. Выпрессовать из корпуса 1 вал 5 с водосбрасывателем 6 и подшипниками 13 (см. рис. 96).
- 14. Если латунный корпус 23 торцового уплотнения не имеет повреждений, его из корпуса 1 можно не извлекать и на этом разборку насоса можно считать законченной (см. рис. 97).

ПОРЯДОК СБОРКИ ВОДЯНОГО НАСОСА

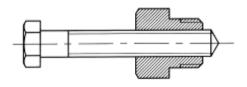
- 1. Промыть все детали насоса и просушить сжатым воздухом.
- 2. Напрессовать на вал 5 (рис. 96) подшипники 13 и водосбрасыватель 6. При этом необходимо:
- предварительно смазать вал 5 дизельным маслом;
- устанавливать подшипники 13 так, чтобы уплотнительные шайбы стояли с внешней стороны;
- усилие напрессовки прилагать к внутреннему кольцу подшипника.
- 3. Заполнить всю полость между подшипниками смазкой Литол-24 (60...70 г).
- 4. Запрессовать вал в сборе с подшипниками и водосбрасывателем в корпус 1 до упора. При этом необходимо:
- предварительно смазать расточку корпуса 1 под подшипники чистым моторным маслом;
- усилие запрессовки прилагать к наружному кольцу подшипника.
- Установить в канавку корпуса 1 стопорное пружинное кольцо 9.
- 6. Напрессовать на вал 5 шкив 10 до упора. При этом необходимо:
- предварительно смазать вал чистым моторным маслом;
- обеспечить неподвижный упор противоположного конца вапа.
- 7. Установить в латунный корпус 19 (рис. 97) детали торцового уплотнения;

- резиновую манжету 22 в сборе с пружиной и каркасами пружины;
- армированную манжету 20 и уплотнительную втулку 21.


Рис. 97. Разборка водяного насоса:

2 — крыльчатка; 9 — стопорное кольцо; 10 — шкив; 17 — гайка съемника; 18 — болт съемника; 19 — корпус торцового уплотнения; 20 — манжета втулки; 21 — втулка уплотнения; 22 — манжета с пружиной в сборе; 23 — латунный корпус втулки уплотнения.


- 8. Установить в крыльчатку 2 резиновую манжету 23 и уплотнительную втулку 21. При этом необходимо:
 - предварительно надеть манжету 23 на уплотнительную втулку 21;
 - нанести тонкий слой смазки в расточку крыльчатки 2 и на наружную поверхность резиновой манжеты 23;
 - взять двумя руками манжету в сборе с втулкой и, прилагая усилие к торцу уплотнительной втулки, вставить эти детали в расточку крыльчатки до упора, не допуская перекосов.
- 9. Напрессовать крыльчатку 2 в сборе с манжетой и уплотнительной втулкой на вал 5 (рис. 96). При этом необходимо:
 - предварительно смазать вал 5 чистым моторным маслом;
 - обеспечить неподвижный упор противоположного конца вала;
 - установить крыльчатку ив валу в размер $10_{-0.15}$ мм (рис. 96) между торцом вала и торцом ступицы крыльчатки. Для этого необходимо при запрессовке установить на торец вала диск диаметром не более 13 мм и высотой $10_{-0.15}$ мм.
- 10. Зафиксировать крыльчатку 2 (или шкив 10) от вращения.
- 11. Завернуть в резьбовое отверстие крыльчатки 2 заглушку 7 до упора;
- 12. Установить в корпус 1 втулку 4 и резиновое кольцо 12.
- 13. Установить в канавку патрубка 3 резиновое кольцо 11, не допуская его перекручивания.
- 14. Запрессовать патрубок 3 в расточку корпуса 1 до упора. При этом необходимо:
 - предварительно смазать расточку в корпусе 1 и кольцо 11 тонким слоем смазки Литол-24;
 - шпильки на корпусе 1 должны свободно войти в крепежные отверстия патрубка 8.
- 15. Закрепить патрубок 3 гайками 14 с пружинными шайбами 15.
- 16. Проверить качество сборки вращая вал 5 за шкив 10. Вращение вала должно быть свободным, без заеданий.

Болт Материал: сталь

Гайка Материал: сталь

Приспособление в сборе

Рис. 98. Съемник

ГЕРМЕТИЗИРУЮЩИЕ СОСТАВЫ

В настоящее время широкое применение в качестве уплотняющего материала на силовых агрегатах ЯМЗ получили герметизирующие составы (герметики) российского и импортного производства.

Наименование соединения	Марка герметика	
или узла	По чертежу	Возможная замена
Стыки крышки блока верхней, крышки шестерен распределения с блоком цилиндров и стыков прокладки масляного картера	Локтайт Ультра Блэк	Перматекс Ультра Блэк
Плоскости стяжных горизонтальных болтов крышек коренных опор блока цилиндров при установке без шайб	Локтайт 518	Анатерм-505, Анатерм-501М
Резьбовые соединения	Унигерм-9	Унигерм-10, Анатерм-111
Пробки горизонтального и вертикального масляного каналов блока цилиндров	Анатерм-5МД	Анатерм-114, Анатерм-8К

Примечание:

Герметик должен наносится на предварительно очищенную и обезжиренную поверхность.

ВНИМАНИЕ: ГЕРМЕТИКИ ОТНОСЯТСЯ К ПОЖАРООПАСНЫМ ВЕЩЕСТВАМ. ПРИ РАБОТЕ С НИМИ СОБЛЮДАТЬ ТЕХНИКУ БЕЗОПАСНОСТИ И ОСТОРОЖНОСТЬ. ПОМЕЩЕНИЕ, ГДЕ ПРОВОДЯТСЯ РАБОТЫ, ДОЛЖНО ИМЕТЬ ЭФФЕКТИВНЫЙ ВОЗДУХООБМЕН.

СЦЕПЛЕНИЕ

ВВЕДЕНИЕ

Силовой агрегат, в зависимости от модели и комплектации (см. раздел «Комплектация»), может комплектоваться сцеплением нескольких моделей.

Сцепление предназначено для:

- плавного трогания с места транспортного средства за счет обеспечения постепенного наращивания нажимного усилия на поверхности трения сцепления при отпускании педали привода сцепления водителем;
- надежной передачи крутящего момента двигателя к трансмиссии (без пробуксовки) при полностью включенном сцеплении;
- кратковременного разъединения двигателя от трансмиссии в момент переключения передач и в других необходимых случаях.

ВНИМАНИЕ! СВЕДЕНИЯ, НЕОБХОДИМЫЕ ДЛЯ ЭКСПЛУАТАЦИИ ПРИВОДА ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ, ПРИВОДЯТСЯ В РУКОВОДСТВЕ ПО ЭКСПЛУАТАЦИИ ТРАНСПОРТНОГО СРЕДСТВА.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ПРЕДУПРЕЖДЕНИЯ

Основным условием надежной работы сцепления на транспортном средстве является знание особенностей устройства сцепления и его привода, а также строгое выполнение указаний по их эксплуатации и уходу за ними. Исходя из этого, прежде чем приступить к эксплуатации транспортного средства, внимательно изучите, наряду с другими узлами и агрегатами, устройство сцепления, а также указания по эксплуатации и уходу, содержащиеся в данном руководстве.

При эксплуатации транспортного средства особое внимание уделять следующему:

- не допускать эксплуатации с неисправным сцеплением и приводом выключения сцепления;
- не открывать люки картера сцепления при работающем двигателе;
- при установке нажимного диска с кожухом на маховик двигателя, обеспечивать надежную затяжку болтов крепления кожуха к маховику;
- выполнять другие правила эксплуатации сцепления.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Модель	ЯМЗ-183	
Тип сцепления	сухое, фрикционное, однодисковое,	
	с диафрагменной вытяжной	
	пружиной и накладками на	
	безасбестовой основе	
Крутящий момент двигателя,		
Н·м (кгс·м):		
минимальный	1100 (112)	
максимальный	1400 (143)	
Диск ведомый сцепления	с демпфером, пружинно-	
	фрикционного типа, с упругим	
	креплением одной из фрикционных	
	накладок	
Размеры фрикционных		
накладок, мм:	420	
наружный диаметр	430	
внутренний диаметр	240	
толщина	4,3	
Диаметр пояса нажимного диска	220	
D _H , MM	320	
Толщина нажимной пружины Т,	5	
MM	3	
Шлицы ступицы ведомого		
диска:	10	
число шлиц внутренний диаметр, мм	34	
внутреннии диаметр, мм наружный диаметр, мм	42	
наружный диаметр, мм ширина впадины, мм	6	
ширина впадины, мм	U	

Ход муфты выключения сцепления, необходимый для выключения, мм: 11 минимальный 13 максимальный Отход нажимного диска при выключении, не менее, мм 2.3 шариковый радиальный 70-117 Подшипник муфты выключения **FOCT 8338-75** Усилие на муфте выключения сцепления, не более, кгс 560 Крутящий момент на валу вилки выключения сцепления. 600 не более. Н∙м Смазка подшипников муфты и HIPVC - 4M опор вала вилки выключения ТУ 38401-58-128-95 или IIIPVC-4 ТУ 0254-001-05766076-98.

УСТРОЙСТВО И РАБОТА СЦЕПЛЕНИЯ

Диафрагменное сцепление (рис. 99) состоит из ведущих и ведомых частей, а также деталей механизма выключения сцепления, устанавливаемых в картер сцепления.

Ведущая часть сцепления — нажимной диск 2 с кожухом, который устанавливается на маховик двигателя и крепится болтами $M10~(12~{\rm mt.})$ на диаметре $450~{\rm mm.}$

Центрирование осуществляется по цилиндрической проточке диаметром 475 мм на маховике и кожухе сцепления.

Нажимной диск соединен с кожухом при помощи 4-х пакетов пластин, обеспечивающих центрирование, осевое перемещение и передачу крутящего момента от кожуха к нажимному диску.

Для исключения проворота диафрагменной пружины относительно кожуха и нажимного диска на последнем установлено 6 пар втулок со специальными скобами. Применение этих скоб позволяет сохранять постоянный контакт нажимного диска с пружиной и обеспечивать отход первого при выключении спепления.

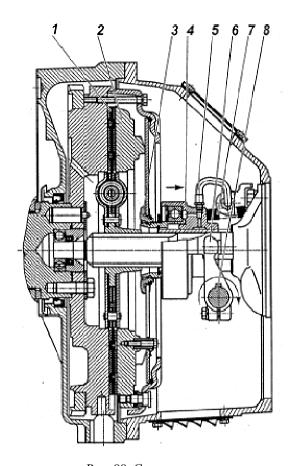


Рис. 99. Сцепление:

1 - диск ведомый; 2 - диск нажимной; 3 - кольцо упорное; 4 - муфта выключения сцепления; 5 - шланг смазки;

6 - вилка выключения сцепления; 7 - оттяжная пружина;

8 - валик вилки выключения спепления.

Ведомая часть - диск ведомый 1 устанавливается между маховиком и нажимным диском и центрируется по шлицам первичного вала коробки передач. В сцеплениях данного типа применен ведомый диск с демпфером пружинно-фрикционного типа с упругим креплением одной из фрикционных накладок.

Благодаря этому, сцепление снижает динамические нагрузки на трансмиссию при резких включениях (трогание с места, переключение передач), а также, исключает резонансные явления и снижает максимальные "пиковые" значения крутящего момента при установившемся движении транспортного средства.

Крепление фрикционных накладок показано на рис. 100.

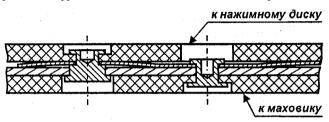


Рис. 100. Крепление фрикционных накладок.

Механизм выключения сцепления состоит из муфты 4 (рис. 99) с подшипником, вилки 6 и валика 8. Муфта соединена через упорное кольцо 3 с диафрагменной пружиной с помощью запорного устройства.

Оттяжная пружина 7 (рис. 99) исключает проворот и осевые перемещения втулки 7 относительно упорного кольца 1 (рис. 101). По мере износа фрикционных накладок муфта выключения сцепления 4 перемещается вместе с пружиной в сторону маховика, при этом конструкция привода выключения сцепления автомобиля или другого транспортного средства обеспечивает поворот вилки 6 (рис. 99) по часовой стрелке после выбора зазора между лапками вилки и муфтой за счет периодической регулировки привода или постепенный поворот за счет конструкции гидропривода.

Конструкция запорного устройства показана на рис. 101. Она включает в себя упорное кольцо 1, втулку подшипника муфты 7 с фасонной канавкой, пружинное кольцо 2 круглого сечения, а также замковое кольцо 5. Упорное кольцо 1 устанавливается на диафрагменную пружину при сборке нажимного диска с кожухом и удерживается за счет пружинной шайбы 3 и стопорного кольца 4. На рисунке муфта заперта (соединена) с упорным кольцом. Внутри втулки подшипника муфты 7 установлено предохранительное кольцо 6, имеющее снаружи выступающий ус, препятствующий случайному рассоединению муфты выключения сцепления и упорного кольца 1.

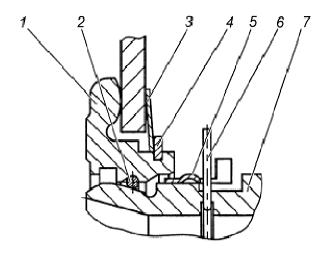


Рис. 101. Запорное устройство:

1 - кольцо упорное; 2 - кольцо пружинное; 3 - шайба пружинная; 4 - кольцо стопорное; 5 - кольцо замковое; 6 - кольцо предохранительное; 7 - втулка подшипника.

Выключение сцепления обеспечивается поворотом вала по часовой стрелке. Допустимое направление перемещения муфты и поворота вала для выключения сцепления показано на рис. 99 стрелками. Перемещение муфты и поворот вала в обратном направлении не допустимо.

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ

Долговечность и надежность сцепления при работе транспортного средства зависит от нагрузок, действующих на детали сцепления, которые в свою очередь определяются спецификой использования сцепления в процессе эксплуатации. Для снижения работы трения (буксование) и нагрева деталей сцепления выполняйте следующие требования:

 при трогании с места использовать 1-ю передачу в коробке передач;

- отпускание педали сцепления осуществляйте при минимально возможной частоте вращения коленчатого вала;
- выбирать оптимальный темп (скорость) отпускания педали сцепления таким образом, чтобы время трогания было возможно минимальным, а транспортное средство при этом начинало трогаться без "рывков" и "дерганий";
- при маневрировании транспортного средства (проезды узких мест, заезды на смотровые ямы, эстакады, в боксы и т.д.) не допускать регулирования скорости пробуксовкой сцепления (педаль привода сцепления частично выжата);
- выполнять в срок и в полном объеме требования по техническому обслуживанию сцепления;
- не допускать эксплуатации с неисправным приводом наличием пробуксовки выключения сцепления. C сцепления при полностью отпущенной педали, а также при наличии "ведения". Эксплуатация с пробуксовкой приводит к повышенному износу фрикционных накладок, появлению трещин на маховике и нажимном диске от Эксплуатация повышенного нагрева. c приводит к затрудненному включению передач и износу деталей синхронизаторов коробки передач.

К одной из особенностей эксплуатации сцепления относится то, что появляющиеся его неисправности (пробуксовка, ведение, замедленное включение и др.) часто связаны с нарушением нормальной работы механизма выключения сцепления, поэтому его необходимо периодически проверять и проводить своевременно техническое обслуживание.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Виды и периодичность технического обслуживания сцепления соответствуют видам и периодичности технического обслуживания двигателя.

Техническое обслуживание сцепления включает ежедневную проверку работы сцепления на транспортном средстве, а также, через одно ТО-1 (через 500 часов) и при каждом ТО-2 производить смазку муфты выключения сцепления с подшипником и валика вилки выключения сцепления.

Ежедневная проверка работы сцепления на транспортном средстве включает проверку на наличие пробуксовки, «ведения» и посторонних шумов и стуков.

Пробуксовка сцепления выявляется в процессе переключения передач, когда после отпускания педали сцепления и резкого увеличения частоты вращения коленчатого вала скорость транспортного средства не повышается.

"Ведение" сцепления (неполное выключение) имеет несколько характерных признаков:

- включение синхронизированных передач затруднено;
- включение несинхронизированных передач происходит с характерным скрежетом в коробке передач;
- транспортное средство с включенной низшей передачей и выжатой педалью привода сцепления движется.

ВНИМАНИЕ! С НАЛИЧИЕМ ПРОБУКСОВКИ СЦЕПЛЕНИЯ ПРИ ПОЛНОСТЬЮ ОТПУЩЕННОЙ ПЕДАЛИ, А ТАКЖЕ, ПРИ НАЛИЧИИ "ВЕДЕНИЯ" ЭКСПЛУАТАЦИЯ НЕ ДОПУСКАЕТСЯ.

Смазка в муфту подается через масленку шланга до появления смазки в зазоре между втулкой подшипника и отражательной шайбой. Смазка валика вилки выключения сцепления производится через две пресс-масленки, сделав шприцем по два хода.

Для обеспечения нормальной работы сцепления периодически контролировать правильность регулировки привода сцепления. Периодичность и порядок контроля и регулировки привода сцепления определяется руководством по эксплуатации транспортного средства.

УСТАНОВКА СЦЕПЛЕНИЯ НА ДВИГАТЕЛЬ

Установка сцепления на двигатель производится в следующем порядке:

- 1. С помощью специальной оправки установить на маховике ведомый диск, при этом фрикционная накладка, приклепанная к пружинной пластине, должна быть расположена к нажимному диску, а удлиненная часть ступицы наружу (от двигателя).
- 2. Установить нажимной диск с кожухом в сборе, обеспечив соосность крепежных отверстий кожуха сцепления и маховика.

- 3. Завернуть вручную болты крепления сцепления на глубину не менее 4 мм.
- 4. Произвести затяжку болтов крепления с Мкр 60...70 Н·м в несколько приемов, равномерно подтягивая нажимной диск с кожухом к маховику, не допуская значительных перекосов нажимной (диафрагменной) пружины.
- 5. С помощью специальной оправки сцентрировать кольцо 3 (рис. 101) относительно оси коленчатого вала лвигателя.

Конструкция запорного устройства механизма выключения сцепления требует выполнения особых правил установки коробки передач на двигатель. Основные положения запорного устройства показаны на рис. 102.

Установка коробки передач и введение муфты выключения сцепления в зацепление с упорным кольцом диафрагменной пружины производится в следующем порядке (рычаг расположен слева по двигателю):

- 1. Повернуть замковое кольцо 5 на муфте таким образом, чтобы его выступы не совпадали с пазами втулки подшипника муфты (положение "a").
- 2. Убедиться, что муфта выключения сцепления отведена до упора в крышку подшипника первичного вала коробки передач пружиной 7 рис. 99.
- 3. Установить коробку передач и закрепить двумя болтами.

ВНИМАНИЕ! ПРИ УСТАНОВКЕ КОРОБКИ ПЕРЕДАЧ НЕ ДОПУСКАТЬ ПЕРЕМЕЩЕНИЯ МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ В СТОРОНУ МАХОВИКА ПОСЛЕ ЕЕ СОЕДИНЕНИЯ С НАЖИМНОЙ ПРУЖИНОЙ.

- 4. Переместить муфту выключения сцепления к упорному кольцу до упора, для чего с помощью технологического рычага повернуть вал вилки выключения сцепления против часовой стрелки. Пружинное кольцо при этом попадает в фасонную канавку упорного кольца (положение "б", рис. 102).
- 5. Поворачивая вал вилки выключения сцепления по часовой стрелке, переместить муфту в направлении от двигателя (положение "в" рис. 102).

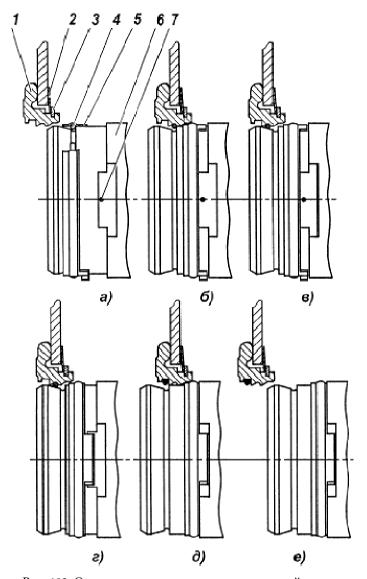


Рис. 102. Основные положения запорного устройства: 1 - кольцо упорное; 2 - шайба пружинная; 3 - кольцо стопорное; 4 - кольцо пружинное; 5 - кольцо замковое; 6 - втулка подшипника; 7 - кольцо предохранительное

- 6. Убедиться, что муфта выключения сцепления введена в зацепление с упорным кольцом приложением к муфте дополнительного усилия в направлении от двигателя.
- 7. Окончательно закрепить коробку передач.

Проверка качества установки сцепления (отсутствие "ведения", контроль величины крутящего момента на валу вилки) осуществляется на неработающем двигателе. Для этого необходимо повернуть вал вилки на угол 9°30'...11° по часовой стрелке, что соответствует перемещению муфты на 11...13 мм от двигателя. При этом выходной вал коробки передач, при включенной передаче, должен вращаться при приложении крутящего момента не более 5 Н·м (0,5 кгс·м). Поворот вала вилки выключения сцепления по часовой стрелке показан на рис. 99.

СНЯТИЕ СЦЕПЛЕНИЯ С ДВИГАТЕЛЯ

Снятие сцепления с двигателя с установленной коробкой передач производится в следующем порядке:

- 1. Отвернуть гайку крепления шланга смазки.
- 2. Протолкнуть шланг смазки в полость картера сцепления.
- 3. Снять коробку передач, при этом муфта выключения сцепления останется на упорном кольце диафрагменной пружины.
- 4. Совместить полукруглый паз на муфте выключения сцепления в передней ее части с выступающим усом предохранительного кольца 6 (рис. 101) и, утопив его каким-либо предметом, удерживать в утопленном положении через центральное отверстие муфты выключения сцепления.
- 5. Повернуть замковое кольцо 5 (рис. 102) относительно втулки 6 так, чтобы выступы кольца совпали с пазами втулки (положение "г").
- 6. Протолкнуть муфту в сторону маховика до упора, при этом пружинное кольцо 4 выйдет из фасонной канавки упорного кольца и встанет в прямоугольную (положение "д").
- 7. Отсоединить муфту, для чего переместить ее в обратном направлении (от маховика), при этом пружинное кольцо останется в прямоугольной канавке упорного кольца (положение "e"), а затем из нее извлекается.

8. Снять нажимной диск с кожухом, для чего отвернуть болты крепления сцепления, постепенно в несколько приемов, не допуская значительных перекосов нажимной пружины.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ УСТРАНЕНИЯ

Причина неисправности	Способ устранения		
ПРОБУКСОВКА			
Износ фрикционных накладок ведомого диска	Заменить накладки или ведомый диск в сборе		
Попадание масла на поверхности трения сцепления через уплотнения двигателя или коробки передач	Удалить масло с поверхностей трения, устраните течь масла		
Поломка нажимной пружины	Заменить нажимную пружину или нажимной диск с кожухом и пружиной в сборе		
Сцепление частично выключено из-за неисправности привода выключения	Устранить неисправность привода выключения сцепления в соответствии с руководством по эксплуатации транспортного средства.		
«ВЕДЕНИЕ»			
Привод выключения сцепления не обеспечивает необходимого хода муфты выключения	Проверить работу привода выключения сцепления и устранить неисправности		
Коробление нажимного диска	Заменить нажимной диск с кожухом в сборе		
Использование ведомого диска после ремонта с недопустимым биением и кривизной	Заменить ведомый диск		
Разрушение накладки ведомого диска	Заменить накладки или ведомый диск		

Причина неисправности	Способ устранения	
ВЫДЕЛЯЮЩИЙСЯ ШУМ В МЕСТЕ РАСПОЛОЖЕНИЯ СЦЕПЛЕНИЯ		
Отсутствие смазки в подшипнике муфты выключения или его износ	Смазать муфту выключения сцепления через масленку, если шум не устранился - заменить муфту с подшипником	

КОРОБКА ПЕРЕДАЧ

Силовой агрегат, в зависимости от модели и комплектации (см. раздел «Назначение и комплектация силовых агрегатов»), может комплектоваться коробкой передач нескольких моделей и различных комплектаций.

Правила эксплуатации и технического обслуживания настоящего раздела распространяются на коробки передач производства ОАО «Автодизель» и ОАО «ТМЗ». При эксплуатации коробок передач других изготовителей руководствоваться положениями эксплуатационных документов соответствующих предприятий.

КОРОБКИ ПЕРЕДАЧ СЕМЕЙСТВА ЯМЗ-238ВМ

ОСНОВНЫЕ МОДЕЛИ КОРОБОК ПЕРЕДАЧ

Модель коробки передач	Предприятие - изготовитель	Предприятие - потребитель
ЯМЗ-238ВМ		РУП «МАЗ»
ЯМЗ-238ВК	OAO «TM3»	ХК «АвтоКрАЗ»
ЯМЗ-238ВУ		ОАО «АЗ«Урал»
ЯМЗ-238ВЛ		АМО «ЗИЛ»

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ КОРОБОК ПЕРЕДАЧ СЕМЕЙСТВА ЯМЗ-238ВМ

Коробки передач производства ОАО «ТМЗ» (обозначаются буквой «В» в маркировке) комплектуются картером демультипликатора из алюминиевого сплава, опорой штока (между цилиндром и картером демультипликатора) механизма переключения демультипликатора с измененным расположением включателя сигнальной лампы демультипликатора.

Модель коробки передач	Основные конструктивные особенности коробки передач
ЯМ3- 238ВМ4	Под двухдисковое сцепление, без рычага переключения передач, с заглушкой на верхней крышке, фланец карданного вала обычный с 16-ю отверстиями, крышка выходного вала с фланцем под привод спидометра.
ЯМ3- 238ВМ5	КП 238ВМ4 под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМ3- 238ВМ7	Отличается от КП 238BM5 фланцем карданного вала с торцовыми шлицами по ISO.
ЯМ3- 238ВК4	Отличается от КП 238ВМ4 наличием короткого рычага переключения передач, устанавливаемого взамен заглушки на верхней крышке.
ЯМ3- 238ВК5	КП 238ВК4 под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМ3- 238ВК7	Отличается от КП 238ВК5 фланцем карданного вала с торцовыми шлицами по ISO.
ЯМЗ- 238ВЛ	Отличается от КП 238ВК4 электромагнитным клапаном, работающим на напряжении 12В, у КП 238ВК4 (ВМ4, ВК5, ВМ5 и др.) – 24В, (соответствующая маркировка на самом клапане: 12В или 24В).
ЯМЗ- 238ВЛ1	КП 238ВЛ под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты, фланец карданного вала обычный с 8-ю отверстиями Ø10 мм.
ЯМ3- 238ВУ	Отличается от КП 238ВК4 только отсутствием на крышке выходного вала фланца для крепления деталей привода спидометра.
ЯМЗ- 238ВУ1	КП 238ВУ под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.
ЯМ3- 238ВУ2	Отличается от КП 238ВУ отсутствием короткого рычага переключения передач и наличием заглушки на верхней крышке.

Модель коробки передач	Основные конструктивные особенности коробки передач	
ЯМ3- 238ВУ3	КП 238ВУ2 под диафрагменное сцепление, отличается размерами муфты выключения сцепления, наличием скобы для зацепления оттяжной цилиндрической пружины муфты.	
ЯМ3- 238ВУ4	Коробка передач 238ВУ2 в герметичном исполнении.	
ЯМ3- 238ВУ5	Коробка передач 238ВУ3 с герметичным картером сцепления.	
ЯМ3- 238ВУ6	Отличается от КП 238ВУ5 фланцем карданного вала с торцовыми шлицами по ISO.	
ЯМ3- 238ВУ7	Отличается от КП 238ВУ3 фланцем карданного вала с торцовыми шлицами по ISO.	
ЯМ3- 238ВУ9	Отличается от КП 238ВУ1 фланцем карданного вала с торцовыми шлицами по ISO.	

ПРЕДУПРЕЖДЕНИЕ

Исправная работа коробки передач и срок ее службы находятся в прямой зависимости от культуры эксплуатации, поэтому необходимо внимательно отнестись к проведению всех регламентных работ, предусмотренных настоящим руководством.

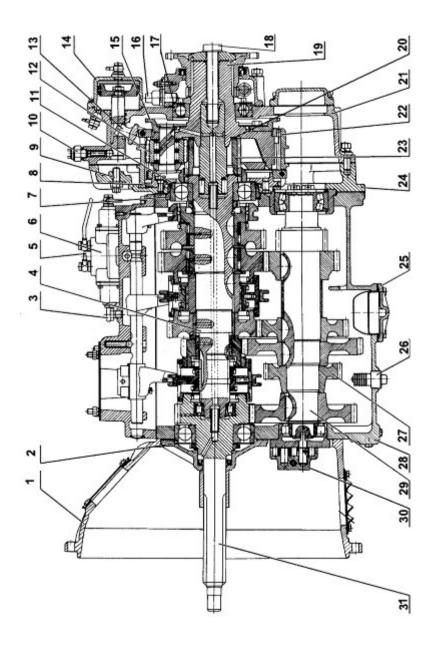
Применение смазочных материалов, не указанных в настоящем руководстве, **не разрешается**.

Во избежание повреждения синхронизатора демультипликатора и синхронизаторов основной коробки передач включение передач в основной коробке при включенной лампе сигнализатора переключения демультипликатора не допускается.

Во избежание чрезмерного возрастания частоты вращения коленчатого вала двигателя и повышенного износа синхронизаторов коробки передач не допускается включение низшего диапазона в демультипликаторе при скорости движения автомобиля выше 35 км/час.

Необходимо соблюдать правила буксировки автомобиля.

ХАРАКТЕРИСТИКИ КОРОБКИ ПЕРЕДАЧ


Коробка передач ЯМЗ-238ВМ (рис. 103) – механическая, восьмиступенчатая, с синхронизаторами на всех передачах, кроме заднего хода, состоит из основной четырехступенчатой коробки передач и двухдиапазонного планетарного демультипликатора.

Механизм переключения диапазонов демультипликатора оснащен автоматической системой блокировки включения низшего диапазона (АСБП).

Реле АСБП устроено таким образом, что разрешает включение низшего диапазона при частоте вращения выходного вала коробки передач не более 920 мин⁻¹, что в зависимости от передаточных чисел ведущего моста, раздаточной коробки, радиуса качения колёс соответствует скорости движения автомобиля 25 - 30 км/час. Для каждого конкретного автомобиля эта величина может быть с достаточной точностью определена как частное от деления величины максимальной (кинематической) скорости на 3,5.

Рис. 103. Коробка передач ЯМЗ-238ВМ:

1 - картер сцепления; 2 - прокладки регулировочные первичного вала; 3 сапун картера; 4 - вал вторичный; 5 - сапун воздухораспределителя; 6 воздухораспределитель; 7 - кольцо центрирующее; 8 - муфта включения низшего диапазона; 9 - болт регулировки упора штока переключения демультипликатора с контргайкой; 10 - включатель сигнализатора переключения демультипликатора; 11 - прокладки регулировочные вторичного вала; 12 - сателлиты; 13 - вилка переключения демультипликатора; 14 цилиндр переключения демультипликатора; 15 - муфта включения высшего диапазона; 16 - датчик скорости системы блокировки низшего диапазона; 17 - регулировочные прокладки выходного вала; 18 - болт крепления в фланца выходного вала, 19 - вал выходной; 20 - кольцо упорное солнечной шестерни; 21 - картер демультипликатора; 22 коронная шестерня; 23 - солнечная шестерня; 24 - проставка; 25 - крышка заборника насоса с сеткой; 26 - пробка сливная с магнитом; 27 шестерня отбора мощности; 28 - картер основной коробки; 29 - вал промежуточный; 30 - насос масляный; 31 - вал первичный.

Заправочная ёмкость системы смазки коробки передач 7,5 литра. Уровень масла определяется нижней кромкой контрольного отверстия на правой стороне проставки, расположенной между картерами основной коробки и демультипликатора.

Пробка маслозаливного отверстия расположена на верхней крышке основной коробки с левой стороны. В качестве заливного может также использоваться контрольное отверстие.

ПЕРЕДАТОЧНЫЕ ЧИСЛА КОРОБКИ ПЕРЕДАЧ

Передача	Передача в основной коробке	Диапазон в демультипли- каторе	Передаточное число
1	1	Низший	7,30
2	2	Низший	4,86
3	3	Низший	3,50
4	4	Низший	2,48
5	1	Высший	2,09
6	2	Высший	1,39
7	3	Высший	1,00
8	4	Высший	0,71
Задний ход	Задний ход	Низший	10,46

ЭКСПЛУАТАЦИЯ КОРОБКИ ПЕРЕДАЧ

Переключение передач с первой по четвертую и с пятой по восьмую производить перемещением рычага переключения в соответствующее положение (рис. 104).

При управлении коробкой передач с помощью механического дистанционного привода положения рукоятки рычага переключения передач могут отличаться от приведенных на схеме и приводятся в руководстве по эксплуатации автомобиля.

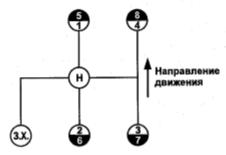


Рис. 104. Схема положений рычага переключения передач

Для переключения с четвертой на пятую передачу переместить кнопку переключения демультипликатора в положение включения высшего диапазона при включенной четвертой передаче в основной коробке передач (расположение органов управления демультипликатором указано в руководстве по эксплуатации автомобиля). Затем перевести рычаг переключения передач в нейтральное положение. Задержать пока не погаснет лампа сигнализатора и включить пятую передачу.

Для перехода с пятой на четвертую передачу переместить кнопку переключения демультипликатора на включение низшего диапазона при включенной пятой передаче, скорость автомобиля при этом не должна превышать 35 км/час. Затем рычаг переключения передач перевести в нейтральное положение, задержать, пока не погаснет лампа сигнализатора, и включить четвертую передачу в основной коробке.

В момент перехода рычага переключения передач через нейтральное положение происходит автоматическое переключение диапазонов в демультипликаторе. Затухание сигнальной лампы свидетельствует о завершении процесса переключения диапазонов.

ВНИМАНИЕ! ТРОГАНИЕ ГРУЖЕНОГО АВТОМОБИЛЯ С МЕСТА ПРОИЗВОДИТСЯ НА ПЕРВОЙ ПЕРЕДАЧЕ. ТРОГАНИЕ НА ВТОРОЙ ПЕРЕДАЧЕ ДОПУСКАЕТСЯ ТОЛЬКО НА ДОРОГАХ С ТВЕРДЫМ ПОКРЫТИЕМ ПРИ ЧАСТИЧНОЙ ЗАГРУЗКЕ АВТОМОБИЛЯ.

Движение задним ходом следует осуществлять при включенном низшем диапазоне в демультипликаторе. При переводе рычага переключения передач из нейтрального положения в положение для включения заднего хода должно ощущаться сопротивление пружинного предохранителя.

ВНИМАНИЕ! ЗАДНИЙ ХОД ВКЛЮЧАТЬ ТОЛЬКО ПОСЛЕ ПОЛНОЙ ОСТАНОВКИ АВТОМОБИЛЯ.

ПРАВИЛА БУКСИРОВКИ АВТОМОБИЛЯ

Буксировку автомобиля с неработающим двигателем при выключенных передачах в коробке передач допускается производить на расстояние не более 20 км и только при включенном высшем диапазоне в демультипликаторе со скоростью не более 30 км/час.

Буксировку автомобиля на большее расстояние следует производить одним из следующих способов:

- 1. С отсоединенным карданным валом.
- 2. Установить орган управления раздаточной коробкой автомобиля в нейтральное положение, если это не запрещено инструкцией по эксплуатации автомобиля.
- 3. Включить седьмую передачу и выключить сцепление.

Буксировка автомобиля с нарушением изложенных правил может привести к выходу из строя коробки передач.

МАСЛА И СМАЗКИ

Для смазки коробки передач следует применять рекомендованные трансмиссионные масла (см. раздел «Эксплуатационные материалы»).

Уровень масла ниже контрольного отверстия не допускается.

Для смазки деталей механизма выключения сцепления следует применять смазки ШРУС-4М ТУ 38401-58-128-95 или ШРУС-4 ТУ 0254-001-05766076-98.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ КОРОБКИ ПЕРЕДАЧ

Виды и периодичность технического обслуживания коробки передач соответствуют видам и периодичности технического обслуживания двигателя.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПОСЛЕ ОБКАТКИ АВТОМОБИЛЯ

После обкатки автомобиля заменить масло в картере коробки передач, очистить от продуктов приработки сетку маслозаборника и магнит.

ПЕРВОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-1)

- Проверить уровень масла в картере и при необходимости долить.
- 2. Проверить работу узлов АСБП. Низший диапазон в коробке передач не должен включаться при скорости транспортного средства, соответствующей частоте вращения выходного вала более 1000 мин ⁻¹.

ВТОРОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-2)

- 1. Выполнить все операции первого технического обслуживания ТО-1.
- 2. Проверить и при необходимости отрегулировать заднюю опору коробки передач в соответствии с руководством по эксплуатации автомобиля (если опора предусмотрена конструкцией автомобиля).
- 3. Произвести очистку и смазку деталей воздухораспределителя коробки передач (с использованием смазки № 158 по ТУ 38.101.320-77. Допускается применение Литола 24).
- 4. Произвести очистку и смазку манжет поршня и стенок цилиндра переключения демультипликатора.

Смену масла в коробке передач с промывкой картера, сетки и магнита производить в зависимости от условий эксплуатации по следующей схеме:

- автомобили с годовым пробегом 80 тыс. км и более через 50 тыс. км;
- автомобили с годовым пробегом менее 80 тыс. км и при тяжелых условиях эксплуатации (грунтовые дороги, гористая местность или жаркий, сухой климатический район и т.п.) через 30-40 тыс. км.

Масло из коробки передач сливать сразу после работы в горячем состоянии. Коробку передач промывать индустриальным маслом И-12A или И-20A по ГОСТ 20799-88, для чего:

- 5,5-6 л его залить в картер коробки;
- установить рычаг переключения передач в нейтральное положение, пустить двигатель на 7-8 минут, после чего остановить его, слить промывочное масло и залить свежее.

Категорически запрещается промывать коробку передач керосином или дизельным топливом во избежание отказа в работе масляного насоса из-за недостаточного разрежения на всасывании и как следствие, выхода из строя коробки передач. В случае полной переборки коробки передач масляный насос перед установкой смазать применяемым в коробке передач маслом.

ОСОБЕННОСТИ СБОРКИ КОРОБКИ ПЕРЕДАЧ

Перед установкой демультипликатора с проставкой на картер основной коробки и проставки на картер демультипликатора на прокладки нанести анаэробный уплотняющий состав УГ-6 ТУ 6-01-1285-84 с обеих сторон непрерывной полосой шириной 2-3 мм по контуру.

При установке крышки подшипника первичного вала (рис. 105), демультипликатора с проставкой на картер основной коробки (рис. 106), крышке заднего подшипника выходного вала демультипликатора (рис. 107) обеспечить минимальные осевые люфты валов с помощью регулировочных прокладок, подобранных следующим образом:

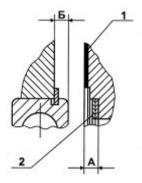


Рис. 105. Регулировка осевого люфта первичного вала: 1 - уплотнительная прокладка; 2 - прокладки регулировочные.

Замерить размер "А" глубины проточки под подшипник в крышке подшипника с учетом толщины прокладки с точностью 0,1 мм (рис. 105).

Замерить размер "Б" от торца наружного кольца подшипника до поверхности стенки картера при запрессованном до упора подшипнике с точностью 0,1 мм.

Подобрать суммарную номинальную толщину регулировочных прокладок S из условия:

$$S = [A - B - (0,2...0,3)]_{MM}$$

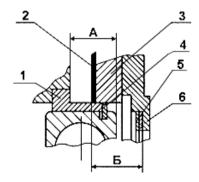


Рис. 106. Регулировка осевого люфта вторичного вала:

- 1 кольцо центрирующее; 2 прокладка уплотнительная;
- 3 проставка; 4 кольцо пружинное; 5 регулировочные прокладки; 6 зубчатая муфта.

Замерить размер "А" (рис. 106) от торца наружного кольца подшипника до поверхности картера с точностью до 0,1 мм, убедившись, что центрирующее кольцо запрессовано до упора, а пружинное кольцо и подшипник плотно прижаты к центральному кольцу.

Замерить размер "Б" глубины проточки под подшипник в зубчатой муфте, с учетом проставки и проточки с точностью 0.1 мм.

Подобрать суммарную толщину регулировочных прокладок S из условия

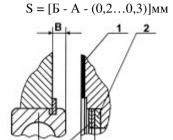


Рис. 107. Регулировка осевого люфта выходного вала:

1 - уплотнительная прокладка; 2 - упорное кольцо;

3 -регулировочные прокладки

Замерить размер "В" (рис. 107) от торца наружного кольца подшипника до поверхности картера с точностью до 0,05 мм, убедившись, что пружинное кольцо и подшипник плотно прижаты к поверхности картера.

Замерить размер "Г" от прокладки до упорного кольца в выточке крышки с точностью до $0.05 \, \mathrm{mm}$.

Подобрать суммарную номинальную толщину регулировочных прокладок S из условия:

$$S = [\Gamma - B - (0,15...0,2)]_{MM}$$

Затяжку болтов крепления картера демультипликатора производить в два приема (см. таблицу "Моменты затяжки").

Последовательность затяжки согласно рис. 108.

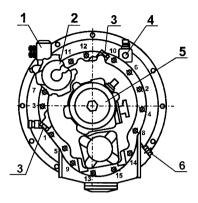


Рис. 108. Последовательность затяжки болтов крепления картера демультипликатора и размещение узлов:

1 - электромагнит; 2 - пневмоцилиндр; 3 - оси вилки переключения демультипликатора; 4 - воздухораспределитель; 5 - выходной фланец; 6 - заливная пробка.

При ремонте демультипликатора с заменой деталей синхронизатора отрегулировать требуемую величину хода штока при включении высшего диапазона, обеспечив разгрузку сухарей вилки при работе на высшем диапазоне, для чего:

- 1. Включить высший диапазон в демультипликаторе, подав воздух под давлением от 784 до 833 кПа (8...8,5 кгс/см²) в заднюю полость пневмоцилиндра убедитесь в том, что муфты включения высшего диапазона вошли в полное зацепление. При полном зацеплении лампочка сигнализатора должна погаснуть фланец крепления карданного вала не должен проворачиваться от усилия руки.
- 2. Завернуть регулировочный болт до упора в шток поршня (при вращении болта должно ощущаться возрастание сопротивления провороту). Повторить операцию несколько раз, убедившись в том, что упор ощущается при одном и том же положении головки болта.
- 3. Довернуть регулировочный болт от положения упора его в торец на один оборот (5 граней головки) и удерживая его в этом положении застопорить контргайкой, затянув ее крутящим моментом 137-157 Н·м (14-16 кгс·см). После регулировки фланец крепления карданного вала должен проворачиваться легко без заеданий, от усилия руки. Фланец проворачивать на угол не менее 360^{0} .

ВНИМАНИЕ! НЕПРАВИЛЬНАЯ РЕГУЛИРОВКА ВЫЗЫВАЕТ ПЕРЕГРУЗКУ СУХАРЕЙ ВИЛКИ ВКЛЮЧЕНИЯ ДИАПАЗОНОВ, ЧТО ПРИВОДИТ К БЫСТРОМУ ИХ РАЗРУШЕНИЮ.

4. Установку демультипликатора на коробку передач производить при вертикальном положении осей валов основной коробки передач. Выходной вал демультипликатора должен проворачиваться от руки при любом включенном диапазоне и выключенных передачах в основной коробке.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОРОБКИ

ПЕРЕЛАЧ И СПОСОБЫ ИХ УСТРАНЕНИЯ Неисправность Способ устранения ЗАТРУЛНЁННОЕ ПЕРЕКЛЮЧЕНИЕ ПЕРЕЛАЧ Неполное выключение сцепления

(сцепление "ведет")

Износ или повреждение синхронизатора

Повреждены зубья зубчатых муфт

Отрегулировать свободный ход педали сцепления или, если дефект является следствием неисправности деталей сцепления, заменить повреждённые летали

Заменить неисправный синхронизатор Заменить поврежденные детали

ПОВЫШЕННЫЙ ШУМ ПРИ РАБОТЕ КОРОБКИ ПЕРЕДАЧ

Недостаточно масла в коробке передач

Износ подшипников валов коробки передач

Повышенный износ зубьев шестерен Заменить изношенные шестерни

Залить масло до уровня контрольного отверстия

Заменить неисправные подшипники

САМОПРОИЗВОЛЬНОЕ ВЫКЛЮЧЕНИЕ ПЕРЕДАЧ ПРИ ДВИЖЕНИИ АВТОМОБИЛЯ

Неравномерный зубьев износ зубчатых муфт

Повышенный износ подшипников валов коробки передач

Неисправности фиксаторов штоков механизма переключения передач

Заменить неисправные детали

Заменить неисправные подшипники

Заменить неисправные детали

САМОПРОИЗВОЛЬНОЕ ВЫКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ

Поступление сжатого воздуха в цилиндра, противоположную включенной передаче

Заменить неисправные уплотнительные кольца золотника и впускного клапана воздухораспределителя

Неисправность	Способ устранения			
Повышенный износ сухарей вилки	Заменить	сухари	И	отрегули-
	ровать ход штока			

НЕВКЛЮЧЕНИЕ ИЛИ ЗАМЕДЛЕННОЕ ВКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ ПРИ НЕЙТРАЛЬНОМ ПОЛОЖЕНИИ РЫЧАГА ОСНОВНОЙ КОРОБКИ. ЛАМПА СИГНАЛИЗАТОРА ДОЛГО НЕ ГАСНЕТ, ВОЗДУХ ВЫХОДИТ ЧЕРЕЗ САПУН ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ

Износ резины впускного клапана	Заменить изношенный клапан		
Поломка пружины впускного	Заменить неисправную пружину		
клапана			
Износ уплотнительного кольца	Заменить уплотнительное кольцо		
впускного клапана			
Неравномерное прилегание впуск-	Заменить неисправные детали		
ного клапана к корпусу			
Заедание впускного клапана в	Очистить и смазать стержень		
отжатом положении	впускного клапана, при необхо-		
	димости отполировать		
Износ или затвердение манжет	Заменить манжеты поршня		
поршня рабочего цилиндра			

НЕВКЛЮЧЕНИЕ ИЛИ ЗАМЕДЛЕННОЕ ВКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ ПРИ НЕЙТРАЛЬНОМ ПОЛОЖЕНИИ РЫЧАГА. ЛАМПА СИГНАЛИЗАТОРА ДОЛГО НЕ ГАСНЕТ, ВОЗДУХ ВЫХОДИТ ЧЕРЕЗ САПУН ВЕРХНЕЙ КРЫШКИ

Повреждение мембраны возду-	Заменить поврежденную
хораспределителя	мембрану
Износ или затвердение уплот-	Заменить уплотнительное кольцо
нительных колец рабочего цилин-	
дра в отверстии под шток вилки	
переключения	

ПРОПУСК ВОЗДУХА ЧЕРЕЗ САПУН ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ ПРИ ВКЛЮЧЕННОЙ ПЕРЕДАЧЕ В ОСНОВНОЙ КОРОБКЕ

Износ резины впускного клапана Неплотное прилегание толкателя к	
впускному клапану	

КОРОБКА ПЕРЕДАЧ ЯМЗ-239 ЕЁ МОДИФИКАЦИИ И КОМПЛЕКТАЦИИ

ПРЕДУПРЕЖДЕНИЕ

- 1. Исправная работа коробки передач и срок её службы находятся в прямой зависимости от культуры эксплуатации, поэтому нужно внимательно отнестись к проведению всех регламентных работ, предусмотренных настоящим руководством.
- 2. Применение смазочных материалов, не рекомендованных настоящим руководством, не разрешается.
- 3. Во избежание повреждения синхронизатора демультипликатора и синхронизаторов основной коробки передач включение передач в основной коробке при включенной лампе сигнализатора переключения демультипликатора не допускается.
- 4. Во избежание чрезмерного возрастания частоты вращения коленчатого вала двигателя и повышенного износа синхронизаторов коробки передач не допускать включения низшего диапазона в демультипликаторе при скорости движения автомобиля выше 45 км/час.
- 5. Во избежание поломки коробки передач при движении автомобиля, категорически запрещается включать первую передачу при включенном высшем диапазоне демультипликатора.

ХАРАКТЕРИСТИКИ КОРОБОК ПЕРЕДАЧ

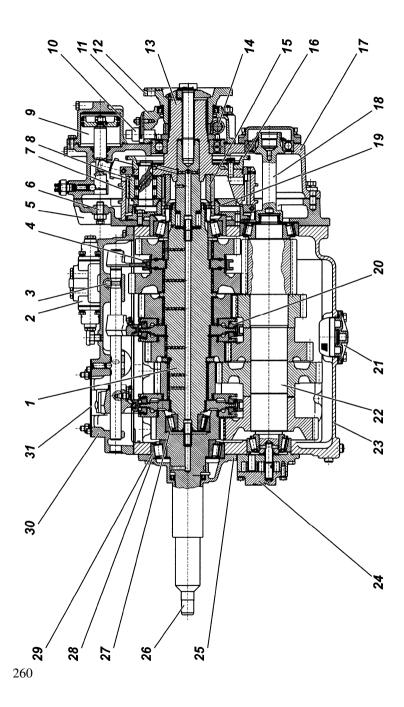
Коробка передач ЯМЗ-239 производства ОАО «Автодизель» (базовая модель, рис. 109) — механическая, девятиступенчатая, состоит из основной пятиступенчатой коробки передач и двухдиапазонного планетарного демультипликатора, с синхронизаторами на всех передачах, кроме первой передачи и заднего хода, дистанционным управлением с вылетом валика механизма 155 мм, с выключателем ВК-403Б, спидометром механическим.

ОСНОВНЫЕ ОТЛИЧИЯ МОДИФИКАЦИЙ И КОМПЛЕКТАЦИЙ КП ОТ БАЗОВОЙ МОДЕЛИ

Модель КП	Основные отличия от базовой модели КП
ЯМ3-239-02	Укомплектована деталями под установку безконтакт-
(для запчастей)	ного датчика спидометра (спидометр электронный), без выключателя ВК-403Б, общеклиматическое исполнение
ЯМ3-239-03	Укомплектована непосредственным рычагом переключения передач взамен механизма под дистанционный привод
ЯМ3-239-04 (для запчастей)	Укомплектована механизмом под дистанционный привод с увеличенным вылетом валика механизма 250 мм
ЯМЗ-239-05 (для запчастей)	Без выключателя ВК-403Б
ЯМЗ-239-12	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), с 2-х конусными синхронизаторами фирмы «Hoerbiger», с вилкой под интегральную муфту, без выключателя ВК-403Б, общеклиматическое исполнение
ЯМЗ-239-13	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), с 2-х конусными синхронизаторами фирмы «Hoerbiger», с вилкой под интегральную муфту, без выключателя ВК-403Б, в герметичном исполнении
ЯМЗ-239-19	С 2-х конусными синхронизаторами фирмы «Hoerbiger», с вилкой под интегральную муфту
ЯМЗ-239-20	С вилкой под интегральную муфту
ЯМЗ-239-22	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), с вилкой под интегральную муфту, без выключателя ВК-403Б, общеклиматическое исполнение
ЯМЗ-239-23	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), с вилкой под интегральную муфту, без выключателя ВК-403Б, в герметичном исполнении
ЯМЗ-239-24	Укомплектована механизмом под дистанционный привод с увеличенным вылетом валика механизма 250 мм, с вилкой под интегральную муфту
ЯМЗ-239-50	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), с вилкой под интегральную муфту

Модель КП	Основные отличия от базовой модели КП
ЯМЗ-239-55	Укомплектована механизмом под дистанционный привод с увеличенным вылетом валика механизма 250 мм, с 2-х конусными синхронизаторами фирмы «Hoerbiger», с вилкой под интегральную муфту
ЯМЗ-2391	Имеет измененные передаточные числа 5 и 9 передач, укомплектована шестерней для отбора мощности от правого бокового люка картера основной коробки
ЯМЗ-2391-02 (для запчастей)	Укомплектована механизмом под дистанционный привод с увеличенным вылетом валика механизма 250 мм, с боковым отбором мощности как у КП ЯМЗ-2391
ЯМЗ-2391-05	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), под муфту интегрального типа, с боковым отбором мощности
ЯМЗ-2391-10	Имеет передаточные числа и отбор мощности как у КП ЯМЗ-2391 и рычаг переключения передач как у КП ЯМЗ-239-03
ЯМЗ-2391-20	Под муфту интегрального типа, с боковым отбором мощности как у КП ЯМЗ-2391
ЯМЗ-2391-22	Укомплектована механизмом под дистанционный привод с увеличенным вылетом валика механизма 250 мм, с вилкой под интегральную муфту, с боковым отбором мощности как у КП ЯМЗ-2391
ЯМ3-2391-23	Укомплектована деталями под установку безконтактного датчика спидометра (спидометр электронный), с вилкой под интегральную муфту, с рычагом переключения передач, с боковым отбором мощности как у КП ЯМЗ-2391, с фланцем по ИСО
ЯМЗ-2391-42	Укомплектована механизмом под дистанционный привод с увеличенным вылетом валика механизма 250 мм, с вилкой под интегральную муфту, с боковым отбором мощности как у КП ЯМЗ-2391, в герметичном исполнении
ЯМЗ-2393-03 (для запчастей)	Не имеет узла привода спидометра, демультипликатор укомплектован специальным фланцем крепления карданного вала (без торцовых шлиц)
ЯМЗ-2393-14	С вилкой под интегральную муфту, без спидометра
ЯМЗ-2393-23	С 2-х конусными синхронизаторами фирмы «Hoerbiger», с вилкой под интегральную муфту, без спидометра

ПЕРЕДАТОЧНЫЕ ЧИСЛА КОРОБОК ПЕРЕДАЧ


	Передача в	Диапазон в	Передаточные числа	
Передача	основной	демульти-	ЯМЗ-239,	-ЕМЯ
	коробке	пликаторе	ЯМЗ-2393-01; -03	2391
1	1	Низший	12,24	12,24
2	2	Низший	6,88	6,88
3	3	Низший	4,86	4,86
4	4	Низший	3,5	3,5
5	5	Низший	2,74	2,46
6	2	Высший	1,97	1,97
7	3	Высший	1,39	1,39
8	4	Высший	1,0	1,0
9	5	Высший	0,78	0,7
Задний ход	Задний ход	Низший	10,04	10,04

Механизм переключения диапазонов демультипликатора оснащен автоматической системой блокировки включения низшего диапазона (АСБП).

Реле АСБП устроено таким образом, что разрешает включение низшего диапазона при частоте вращения выходного вала коробки передач не более 1000 мин⁻¹, что в зависимости от передаточных чисел ведущего моста, раздаточной коробки, радиуса качения колёс соответствует скорости движения автомобиля 25 - 45 км/час.

Заправочная ёмкость системы смазки коробки передач 9,5...11,5 литров в зависимости от угла наклона продольной оси силового агрегата (коробки передач) на конкретном транспортном средстве.

Маслозаливное отверстие расположено на правой стороне проставки, установленной между картерами основной коробки и демультипликатора. Уровень масла определяется нижней кромкой этого отверстия.

Рис. 109. Продольный разрез коробки передач:

1-вал вторичный; 2-воздухораспределитель; 3-сухари механизма подачи воздуха в пневмоцилиндр; 4-муфта включения 1-ой передачи и заднего хода; 5-проставка; 6-болт регулировочный; 7-шестерня коронная; 8сателлит: 9-пневмоцилиндр включения передач демультипликатора: 10датчик скорости; 11-крышка заднего подшипника выходного вала; 12фланец крепления карданного вала; 13-вал выходной с синхронизатором; 14-червяк привода спидометра; 15-шестерня солнечная; 16-муфта зубчатая высшего диапазона; 17-картер демультипликатора; 18-вал отбора мощности; 19-муфта соединительная солнечной шестерни; 20синхронизатор; 21-заборник масляного насоса; 22-вал промежуточный; 23-картер коробки передач; 24-масляный насос; 25-крышка подшипника; 26-вал первичный; 27-подшипник передний; 28-прокладки регулировочные; 29-подшипник задний первичного вала; 30-крышка верхняя с вилками и штоками переключения передач; 31-крышка-заглушка (устанавливается при поставке коробки передач без наконечника с опорой рычага переключения передач).

ЭКСПЛУАТАЦИЯ КОРОБКИ ПЕРЕДАЧ

Переключение передач с первой по пятую и с шестой по девятую производить, как и на любой коробке передач, перемешением рычага соответствующее переключения положение. Для включения шестой передачи включенной пятую передачу и переместить кнопку переключения демультипликатора на включение высшего диапазона в демультипликаторе (расположение органов управления демультипликатором указано в руководстве по эксплуатации на автомобиль). Шестая передача включается переводом рычага переключения основной коробки в положение 2 передачи. В момент перехода рычага через нейтральное положение автоматически включается высший диапазон в демультипликаторе, при этом рычаг задержать в нейтральном положении до тех пор, пока не погаснет лампа сигнализатора переключения демультипликатора (т.е. до включения высшего диапазона).

Для перехода с шестой на пятую передачу переместить кнопку переключения демультипликатора на включение низшего диапазона при включенной шестой передаче, скорость автомобиля при этом не должна превышать 45 км/час. Затем рычаг переключения передач перевести в нейтральное положение, задержать, пока не погаснет лампа сигнализатора, и включить пятую передачу в основной коробке.

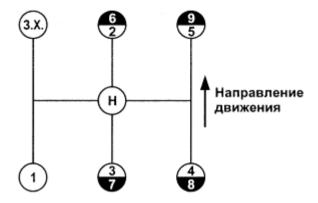


Рис. 110. Схема положений рычага переключения передач

При управлении коробкой передач с помощью механического дистанционного привода положения рукоятки рычага переключения передач могут отличаться от приведенных на схеме (рис. 110) и указываются в руководстве по эксплуатации автомобиля.

При переводе рычага переключения передач из нейтрального положения в положение для включения заднего хода должно ощущаться сопротивление пружинного предохранителя. Задний ход включать только после полной остановки автомобиля.

Движение задним ходом следует осуществлять при включенном низшем диапазоне в демультипликаторе.

Трогание груженого автомобиля с места производится на первой передаче. Трогание на второй передаче допускается только на дорогах с твердым покрытием при частичной загрузке автомобиля.

ПРАВИЛА БУКСИРОВКИ АВТОМОБИЛЯ

Буксировку автомобиля с неработающим двигателем можно производить только при отсоединенном карданном вале.

МАСЛА И СМАЗКИ

Для смазки коробки передач следует применять рекомендованные трансмиссионные масла (см. раздел «Эксплуатационные материалы»).

Уровень масла ниже контрольного отверстия не допускается.

Для смазки деталей механизма выключения сцепления следует применять смазки ШРУС-4М ТУ 38401-58-128-95 или ШРУС-4 ТУ 0254-001-05766076-98.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ КОРОБКИ ПЕРЕДАЧ

Виды и периодичность технического обслуживания коробки передач соответствуют видам и периодичности технического обслуживания двигателя.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ПОСЛЕ ОБКАТКИ АВТОМОБИЛЯ

После обкатки автомобиля заменить масло в картере коробки передач, очистить от продуктов приработки сетку маслозаборника и магнит сливной пробки.

ПЕРВОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-1)

- 1. Проверить уровень масла в картере и при необходимости долить.
- 2. Проверить работу узлов АСБП. Низший диапазон в коробке передач не должен включаться при скорости транспортного средства, соответствующей частоте вращения выходного вала более 1000 мин ⁻¹.

ВТОРОЕ ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО-2)

- 1. Выполнить все операции первого технического обслуживания ТО-1.
- 2. Проверить и при необходимости отрегулировать заднюю опору коробки передач в соответствии с руководством по эксплуатации автомобиля (если опора предусмотрена конструкцией автомобиля).

- 3. Произвести очистку и смазку деталей воздухораспределителя коробки передач (с использованием смазки № 158 по ТУ 38.101.320-77. Допускается применение Литола 24).
- 4. Произвести очистку и смазку манжет, поршня и стенок цилиндра переключения демультипликатора.
- 5. Устранить утечки воздуха и все неисправности в работе пневмосистемы механизма управления демультипликатором.
- 6. Каждый раз при отсоединении коробки передач от двигателя передний подшипник первичного вала, установленный в маховике, набить смазкой Литол 24 ГОСТ 21150. При этом проверить осевой люфт валов коробки передач, который должен быть не более 0,1 мм. Если люфты окажутся более указанных величин, то их необходимо отрегулировать согласно приведенным ниже указаниям или заменить подшипники.

Смену масла в коробке передач с промывкой картера, сетки и магнита производить в зависимости от условий эксплуатации по следующей схеме:

- автомобили с годовым пробегом 80 тыс. км и более через 50 тыс. км;
- автомобили с годовым пробегом менее 80 тыс. км и при тяжелых условиях эксплуатации (грунтовые дороги, гористая местность или жаркий, сухой климатический район и т.п.) через 30-40 тыс. км.

Масло из коробки передач сливать сразу после работы в горячем состоянии. Коробку передач промывать индустриальным маслом И-12A или И-20A по ГОСТ 20799-88, для чего:

- 5,5-6 л его залить в картер коробки;
- установить рычаг переключения передач в нейтральное положение, пустить двигатель на 7-8 минут, после чего остановить его, слить промывочное масло и залить свежее.

Категорически запрещается промывать коробку передач керосином или дизельным топливом во избежание отказа в работе масляного насоса из-за недостаточного разрежения на всасывании и как следствие, выхода из строя коробки передач. В случае полной переборки коробки передач масляный насос перед установкой смазать применяемым в коробке передач маслом.

ПОРЯДОК УСТАНОВКИ ВАЛОВ В КАРТЕР КОРОБКИ ПЕРЕДАЧ И РЕГУЛИРОВКА КОНИЧЕСКИХ ПОДШИПНИКОВ

Замеры всех размеров для определения необходимого количества установочных и регулировочных прокладок должны производиться с точностью 0,01 мм не менее чем в трех, равноудаленных друг от друга местах. При расчете суммарной толщины этих прокладок должно быть принято среднее арифметическое значение этих размеров.

1. Подобрать необходимое количество установочных прокладок для обеспечения взаимного положения первичного и вторичного валов с монтажным размером Д=0,3 мм (рис. 111), для этого:

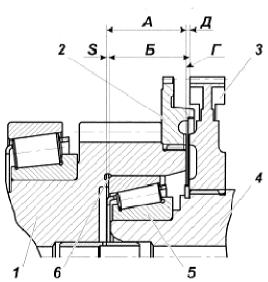
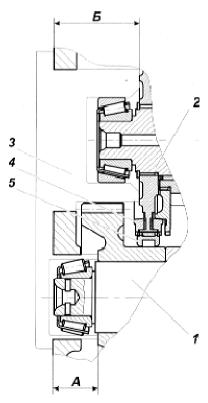


Рис. 111:

1 — вал первичный; 2 — кольцо зубчатое первичного вала; 3 — ступица синхронизатора; 4 — вал вторичный; 5 — подшипник; 6 — установочные прокладки

1.1. При запрессованном до упора внутреннем кольце переднего подшипника вторичного вала замерить размер Б (от торца ступицы синхронизатора до широкого торца наружного


кольца подшипника). Перед замерами кольцо подшипника плотно прижать к роликам и провернуть его не менее пяти оборотов.

- 1.2. При прижатом до упора к торцу первичного вала зубчатом кольце поз. 2 замерить размер A (от торца зубчатого кольца до торца выточки под подшипник в первичном вале).
- 1.3. Подобрать необходимое количество установочных прокладок исходя из условия: Sпp=S+(0...0,05),

где Sпр - суммарная толщина прокладок, а S=A+0,3-Б.

Подобранные прокладки установить в расточку к торцу первичного вала.

2. Завести в картер коробки передач собранные в сборе промежуточный и вторичный валы и зафиксировать их взаимное положение друг относительно друга с помощью технологического приспособления (рис. 112) таким образом, чтобы

обеспечивался монтажный размер А (от переднего торца картера коробки передач до переднего торца ступицы шестерни привода промежуточного вала) равный 48±0.025 мм и монтажный размер Б (от переднего торца картера коробки передач до переднего торца ступицы синхронизатора 4-5 передач) равный 90,3±0,025 мм. При этом блокировочное кольцо поз. 5 и муфта синхронизатора должны быть зафиксированы на ступице вторичного вала, а наружное кольцо переднего подшипника промежуточного вала должно быть снято.

Рис. 112:

- 1 вал промежуточный в сборе;
- 2 вал вторичный в сборе; 3 технологическое приспособление; 4 кольцо блокировочное; 5 муфта

3. После выполнения работ по п. 2 подобрать необходимое количество установочных прокладок для обеспечения беззазорного торцового упора заднего подшипника промежуточного вала с проставкой и гнезда заднего подшипника вторичного вала с зубчатой муфтой демультипликатора.

Подбор установочных прокладок производить следующим образом:

3.1. Замерить абсолютные величины размеров А (между торцами уплотнительной прокладки и проставки) и Б (между торцами картера и подшипника) рис. 113. При этом, торец ступицы шестерни привода промежуточного вала должен быть плотно (под усилием собственного веса вала) прижат к торцу технологического приспособления, а наружное кольцо заднего подшипника - к роликам.

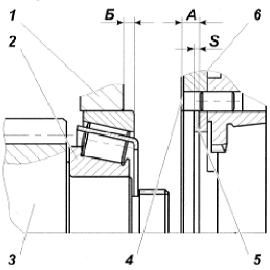


Рис. 113:

1 – картер; 2 – подшипник; 3 – вал промежуточный; 4 – прокладка уплотнительная; 5 – прокладки установочные; 6 – проставка демультипликатора

3.2. Подобрать необходимое количество установочных прокладок исходя из условия: Sпp=S±0,05,

где Sпр - суммарная толщина прокладок, а S=A-Б-0,12; 0,12 - деформация уплотнительной прокладки.

Подобранные прокладки установить в расточку к торцу проставки демультипликатора.

3.3. Замерить абсолютные величины размеров А (между торцами зубчатой муфты и уплотнительной прокладки) и Б (между торцами картера и гнезда подшипника) рис. 114.

При этом, торец ступицы синхронизатора 4-5 передач должен быть плотно (под усилием собственного веса вала) прижат к торцу технологического приспособления, а наружное кольцо заднего подшипника с гнездом - к роликам.

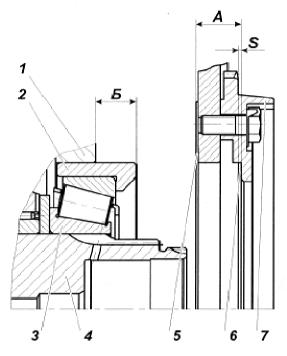


Рис. 114:

- 1 картер коробки передач; 2 гнездо подшипника; 3 подшипник; 4 вал вторичный; 5 прокладка уплотнительная; 6 прокладки установочные; 7 зубчатая муфта демультипликатора
- 3.4. Подобрать необходимое количество установочных прокладок исходя из условия: Sпp=S±0,05,

где Sпр - суммарная толщина прокладок, а S=A-Б-0,12; 0,12 - деформация уплотнительной прокладки.

Подобранные прокладки установить в расточку к торцу зубчатой муфты демультипликатора .

- 4. Демультипликатор с установочными прокладками, подобранными по п. 3, пристыковать к картеру коробки передач, обеспечив затяжку болтов крепления демультипликатора к коробке передач с $M_{\kappa p}$ =215,74...274,5 H·м (22...28 кгс·м). Перед установкой демультипликатора на уплотнительную прокладку поз. 5 (рис. 105) с обеих сторон нанести герметик УГ-9 ТУ 6-01-1326-86 или УГ-6 ТУ 6-01-1285-84 непрерывной полосой шириной 2...3 мм по контуру.
- 5. Демонтировать технологическое приспособление, после чего отрегулировать осевые зазоры в подшипниках промежуточного, первичного и вторичного валов. Регулировку произвести следующим образом:
- 5.1. Установить в расточку картера коробки передач наружное кольцо переднего подшипника промежуточного вала, после чего замерить абсолютную величину размера А (между торцами картера и наружным кольцом подшипника) рис. 115. При этом, наружное кольцо заднего подшипника промежуточного вала должно быть плотно (под усилием собственного веса вала) прижато к торцу проставки демультипликатора, а наружное кольцо переднего подшипника к роликам. Перед замером промежуточный вал провернуть не менее пяти оборотов.
- 5.2. Замерить абсолютную величину размера Б (между торцами корпуса масляного насоса).
- 5.3. Подобрать необходимое количество регулировочных прокладок исходя из условия: Sпp=S-(0,005...0,05),

где Sпр - суммарная толщина прокладок, а S=A-Б.

Подобранные прокладки установить в расточку картера коробки передач к торцу наружного кольца подшипника.

- 5.4. Пристыковать к картеру коробки передач масляный насос, обеспечив затяжку болтов крепления масляного насоса к картеру коробки передач с Мкр=23,53...35,30 Н·м (2,4...3,6 кгс·м).
- 5.5. Проверить правильность регулировки подшипников промежуточного вала путем его осевого перемещения. Осевое перемещение вала должно быть в пределах (0,005...0,06).

Установить в расточку картера коробки передач первичный вал в сборе с прокладками подобранными по п. 1. рис. 116.

Убедиться, что подшипники промежуточного вала "не перетянуты" и вал имеет возможность свободно проворачиваться,

для чего провернуть несколько оборотов первичный вал от руки за шлицевой конец. При неудовлетворительных результатах проверки регулировки подшипников снять масляный насос и произвести повторную регулировку.

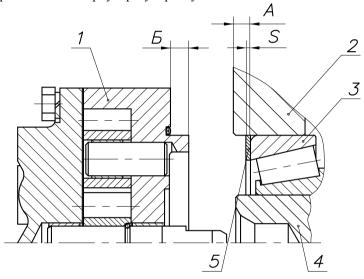


Рис.115:

- 1 насос масляный; 2 картер коробки передач; 3 подшипник;
- 4 вал промежуточный; 5 прокладки регулировочные
- 5.6. Замерить размер Б рис. 116, (между торцами картера коробки передач и наружного кольца подшипника) при этом, гнездо заднего подшипника вторичного вала должно быть плотно (под усилием собственного веса вторичного вала) прижато через установочные прокладки к торцу зубчатой муфты демультипликатора; первичный вал должен быть плотно (под усилием собственного веса) прижат через установочные прокладки к торцу наружного кольца переднего подшипника вторичного вала, а наружное кольцо заднего подшипника первичного вала к роликам.
- 5.7. Замерить абсолютную величину размера А (между торцами крышки подшипника первичного вала).
- 5.8. Подобрать необходимое количество регулировочных прокладок исходя из условия: Sпр= S-(0,005...0,05),

где Sпр - суммарная толщина прокладок, а S=A-Б.

Подобранные прокладки установить в расточку крышки подшипника первичного вала к торцу.

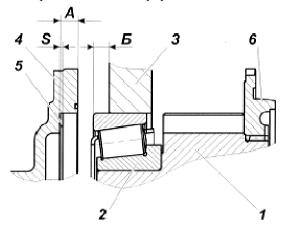


Рис. 116:

- 1 вал первичный; 2 подшипник; 3 картер; 4 крышка подшипника; 5 прокладки регулировочные; 6 кольцо зубчатое
- 5.9. Крышку подшипника первичного вала пристыковать к картеру коробки передач, обеспечив затяжку болтов крепления крышки к картеру с Мкр (23,53...35...30) Н·м [(2,4...3,6) кгс·м].
- 5.10. Проверить правильность регулировки подшипников первичного и вторичного валов путем осевого перемещения одного из валов, а также проворачиванием первичного вала с частотой вращения 10...15 мин⁻¹, при этом муфты синхронизаторов и муфта включения первой передачи и заднего хода должны быть в нейтральном положении, блокирующие кольца должны быть отжаты от конусов зубчатых муфт.

Осевое перемещение валов должно быть в пределах (0,005...0,06), а момент прокрутки первичного вала должен быть не более 2...3 $H\cdot M$ (0,2...0,3 кгс·м).

При неудовлетворительных результатах проверки регулировки подшипников снять крышку подшипника первичного вала и произвести повторную регулировку.

ТРЕБОВАНИЯ К СБОРКЕ КОРОБКИ ПЕРЕДАЧ И ЕЁ СОСТАВНЫХ ЧАСТЕЙ

Детали и узлы коробки передач, поступающие на сборку, должны быть чистыми, следы коррозии и окалины не допускаются. Масляные и воздушные каналы в деталях должны быть промыты и продуты. Освобождение узлов и деталей от упаковки, транспортных заглушек производить только перед установкой на коробку передач.

При сборке обеспечить сохранение узлов и деталей от повреждений. Использование стальных выколоток не допускается.

При установке подшипников на валы нагрузку прилагать на внутренние кольца. Ударная нагрузка при установке и демонтаже подшипников не допускается. При установке уплотнительных прокладок не допускаются морщины, надрывы, перекрытие прокладками соединительных каналов.

Все трущиеся поверхности деталей коробки передач, включая поверхности трения деталей механизма переключения, беговые дорожки подшипников шестерен смазать при сборке тонким слоем масла, применяемого для обкатки коробки передач.

Подшипник муфты и втулки вала выключения сцепления прошприцевать через прессмасленки смазкой Литол-24 ГОСТ 21150 до появления ее из-под отражательной шайбы подшипника муфты и из зазоров втулок.

Направляющую крышки под муфту и рабочую кромку манжеты первичного вала смазать тонким слоем вышеуказанной смазки.

Шестерни коробки передач должны быть скомплектованы в соответствии с требованиями.

Установка шестерен на валы должна производиться в соответствии с требованиями документации.

При напрессовке шестерен на промежуточный вал скрежет и надиры на поверхностях отверстий шестерен и вала не допускаются. Усилие напрессовки шестерен в начальной стадии 25...35 кН (2550...3570 кгс).

Температура промежуточного вала с напрессованными на него шестернями перед установкой в коробку передач не должна превышать 35°C. Охладить при необходимости на воздухе.

ОСОБЕННОСТИ СБОРКИ КОРОБКИ ПЕРЕДАЧ

Затяжку болтов крепления картера демультипликатора производить в два приема (см. таблицу "Моменты затяжки"). Последовательность затяжки согласно рис. 117.

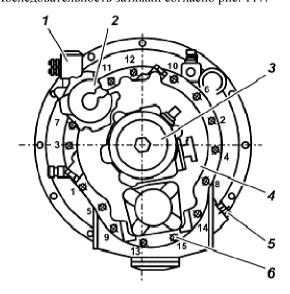


Рис. 117. Последовательность затяжки болтов крепления картера демультипликатора и размещение узлов:

1 – электромагнит; 2 – пневмоцилиндр; 3 – выходной фланец; 4 – демультипликатор; 5 – заливная пробка; 6 – болт крепления.

При ремонте демультипликатора с заменой деталей синхронизатора отрегулировать требуемую величину хода штока при включении высшего диапазона, обеспечив разгрузку подшипников вилки при высшем диапазоне, для чего:

- Включить высший диапазон в демультипликаторе при вывернутом регулировочном болте поз. 6 (рис. 109), подав воздух под давлением от 784 до 833 кПа (8...8,5 кгс/см 2) в пневмоцилиндр.
- Убедиться в том, что зубчатые муфты включения высшего диапазона вошли в полное зацепление. При полном зацеплении лампочка сигнализатора должна погаснуть, фланец крепления карданного вала не должен проворачиваться от усилия руки.

– Завернуть регулировочный болт до упора в шток поршня, довернуть на 5/6 оборота. Повторить эту операцию несколько раз, и если при доворачивании болта положение его граней остается неизменным, застопорить болт контргайкой, затянув ее крутящим моментом от 137 до 157 Н⋅м (от 14 до 16 кгс⋅м).

При правильной регулировке фланец выходного вала должен проворачиваться без заеданий от усилия руки.

Неправильная регулировка приводит к ускоренному износу подшипников вилки переключения.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ КОРОБКИ ПЕРЕДАЧ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Причина неисправности	Способ устранения		
ЗАТРУДНЁННОЕ ПЕРЕКЛЮЧЕНИЕ ПЕРЕДАЧ			
Неполное выключение сцепления (сцепление "ведет")	Отрегулировать свободный ход педали сцепления или, если дефект является следствием неисправности деталей сцепления, заменить повреждённые детали		
Износ или повреждение синхронизатора	Заменить неисправный синхронизатор		
Повреждены зубья зубчатых муфт	Заменить поврежденные детали		
ПОВЫШЕННЫЙ ШУМ ПРИ РАБОТЕ КОРОБКИ ПЕРЕДАЧ			
Недостаточно масла в коробке передач	Залить масло до уровня контрольного отверстия		
Износ подшипников валов короб- ки передач	Заменить неисправные подшипники		
Повышенный износ зубьев шестерен	Заменить изношенные шестерни		
САМОПРОИЗВОЛЬНОЕ В	ЫКЛЮЧЕНИЕ ПЕРЕДАЧ		
при движении	І АВТОМОБИЛЯ		
Неравномерный износ зубьев зубчатых муфт	Заменить неисправные детали		
Повышенный износ подшипников валов коробки передач	в Заменить неисправные подшипники		
Неисправности фиксаторов штоков механизма переключения передач	в Заменить неисправные детали		

Неисправность

Способ устранения

САМОПРОИЗВОЛЬНОЕ ВЫКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ

Поступление сжатого воздуха в полость цилиндра, противоположную включенной передаче

Заменить неисправные уплотнительные кольца золотника и впускного клапана воздухораспределителя

Выход из строя подшипников вилки переключения диапазонов

Заменить подшипники

НЕВКЛЮЧЕНИЕ ИЛИ ЗАМЕДЛЕННОЕ ВКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ ПРИ НЕЙТРАЛЬНОМ ПОЛОЖЕНИИ РЫЧАГА ОСНОВНОЙ КОРОБКИ. ЛАМПА СИГНАЛИЗАТОРА ДОЛГО НЕ ГАСНЕТ, ВОЗДУХ ВЫХОДИТ ЧЕРЕЗ САПУН ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ

Износ резины впускного клапана Поломка пружины впускного клапана Износ уплотнительного кольца впускного клапана Неравномерное прилегание впускного клапана к корпусу Заедание впускного клапана в отжатом положении

Заменить изношенный клапан Заменить неисправную пружину

Заменить уплотнительное кольцо

Заменить неисправные детали

Очистить и смазать стержень впускного клапана, при необходимости отполировать Заменить манжеты поршня

Износ или затвердение манжет поршня рабочего цилиндра

НЕВКЛЮЧЕНИЕ ИЛИ ЗАМЕДЛЕННОЕ ВКЛЮЧЕНИЕ ДИАПАЗОНОВ В ДЕМУЛЬТИПЛИКАТОРЕ ПРИ НЕЙТРАЛЬНОМ ПОЛОЖЕНИИ РЫЧАГА. ЛАМПА СИГНАЛИЗАТОРА ДОЛГО НЕ ГАСНЕТ, ВОЗДУХ ВЫХОДИТ ЧЕРЕЗ САПУН ВЕРХНЕЙ КРЫШКИ

Повреждение мембраны воздухораспределителя

Заменить поврежденную мембрану Заменить уплотнительное кольцо

Износ или затвердение уплотнительных колец рабочего цилиндра в отверстии под шток вилки переключения

ПРОПУСК ВОЗДУХА ЧЕРЕЗ САПУН ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ ПРИ ВКЛЮЧЕННОЙ ПЕРЕЛАЧЕ В ОСНОВНОЙ КОРОБКЕ

Износ резины впускного клапана Неплотное прилегание толкателя к впускному клапану Заменить клапан Заменить неисправные детали

ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ РЕКЛАМАЦИЙ

УВАЖАЕМЫЙ ВЛАДЕЛЕЦ! ОАО «АВТОДИЗЕЛЬ» (ЯМЗ) (ДАЛЕЕ ИЗГОТОВИТЕЛЬ) ВЫРАЖАЕТ БЛАГОДАРНОСТЬ ЗА ВАШ ВЫБОР И ГАРАНТИРУЕТ ВЫСОКОЕ КАЧЕСТВО И БЕЗУПРЕЧНОЕ ФУНКЦИ-ОНИРОВАНИЕ ПРИОБРЕТЕННОГО ВАМИ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ ПРИ СОБЛЮДЕНИИ ПРАВИЛ ЕГО ЭКСПЛУАТАЦИИ, ИЗЛОЖЕННЫХ В НАСТОЯЩЕМ РУКОВОДСТВЕ

Гарантийные обязательства ОАО «Автодизель» (ЯМЗ) на стадии эксплуатации силового агрегата/двигателя исполняет ООО «Силовые агрегаты - Группа Γ АЗ».

ОБЛАСТЬ ПРИМЕНЕНИЯ ГАРАНТИИ

Настоящая гарантия действует в отношении силовых агрегатов/двигателей производства ОАО «Автодизель» (ЯМЗ), зарегистрированных в установленном порядке и находящихся в эксплуатации на территории Российской Федерации (РФ), странах зарубежья, проданных физическим и юридическим лицам и независимо от принадлежности торгующей организации и места жительства владельца.

Предметом гарантии является соответствие силового агрегата/ двигателя, в комплектации, поставленной изготовителем, обязательным требованиям к качеству, предусмотренным законодательством РФ и договором, и его пригодность для использования по назначению в соответствии с заявленными характеристиками в настоящем руководстве по эксплуатации.

В течение гарантийных срока эксплуатации и наработки ООО «Силовые агрегаты - Группа ГАЗ» обязуется устранять неисправности, возникшие на стадии эксплуатации силового агрегата/двигателя, при условии, что неисправности не возникли вследствие нарушения потребителем правил хранения, эксплуатации и обслуживания силового агрегата/двигателя, оговоренные в настоящем уководстве по эксплуатации, действий третьих лиц и непреодолимой силы (пожара, природной катастрофы и т.д.).

Гарантийные обязательства действительны при своевременном и обязательном выполнении планового технического обслуживания на сервисных центрах, аттестованных ООО «Силовые агрегаты - Группа ГАЗ» (далее СЦ).

Примечание: Список сервисных центров приведен в сервисной книжке изделия, а также, размещен на сайте www.service.powertrain.ru или www.gazgroup.ru.

Проведение технического обслуживания подтверждается соответствующими записями в сервисной книжке (формуляре, сервисном талоне) изделия и двигателя, за исключением случаев, когда сервисная книжка (формуляр, сервисный талон) не предусмотрена комплектом поставки изделия или двигателя. При отсутствии в регионе эксплуатации техники указанных СЦ, необходимо письменно согласовать с ООО «Силовые агрегаты - Группа ГАЗ» порядок обслуживания силового агрегата/двигателя.

Устранение неисправностей силового агрегата/двигателя, возникших по вине изготовителя в период гарантии, выполняется за счет ООО «Силовые агрегаты - группа ГАЗ». Устранение неисправностей, возникших в результате нарушений потребителем правил хранения, эксплуатации, обязательного технического обслуживания, а также неисправностей, устраненных методом замены деталей прикладываемых в ЗИП двигателя, осуществляется за счет потребителя. ВНИМАНИЕ! УСТРАНЕНИЕ НЕИСПРАВНОСТЕЙ В ГАРАНТИЙНЫЙ ПЕРИОД МЕТОДОМ ЗАМЕНЫ ДЕТАЛЕЙ, ПРИКЛАДЫВАЕМЫХ В ЗИП ДВИГАТЕЛЯ, НЕОБХОДИМО ВЫПОЛНЯТЬ НА СЦ.

Пополнение и замена расходуемых эксплуатационных материалов (масел, охлаждающих жидкостей и др.) за счет гарантии производится только в том случае, если это связано с проведением соответствующего гарантийного ремонта.

СРОК ДЕЙСТВИЯ ГАРАНТИИ НА СИЛОВОЙ АГРЕГАТ/ЛВИГАТЕЛЬ

Гарантийный срок на новый силовой агрегат/двигатель установлен изготовителем и составляет:

• на силовой агрегат/двигатель, поставляемый на комплектацию - равен гарантийному сроку и наработке изделия, на которое он установлен.

Силовой агрегат/двигатель должен быть установлен на изделие не позднее, чем через шесть месяцев со дня отгрузки с ОАО «Автодизель» (ЯМЗ). Продолжительность нахождения силового агрегата/двигателя в составе автомобиля или другого изделия на каждом последующем заводе комплектации не должна превышать трёх месяцев, при этом должны соблюдаться правила хранения, консервации и расконсервации, изложенные в настоящем руководстве по эксплуатации. Гарантийные срок эксплуатации и наработка силового агрегата/двигателя исчисляются с момента исчисления гарантийных срока эксплуатации и наработки изделия, на которое он установлен.

- на силовые агрегаты/двигатели, предназначенные для Министерства обороны (МО) РФ, гарантийный срок эксплуатации и наработки устанавливается в соответствии с гарантийным сроком эксплуатации и наработки конечного изделия, но не более 10 лет. Для двигателей, предназначенных для поставки в запасные части для МО РФ и прошедших полную консервацию гарантийный срок эксплуатации исчисляется со дня установки на изделие при условии, что с момента консервации двигателя прошло не более 5 лет.
- на силовой агрегат/двигатель, поставляемый в запасные части, гарантийный срок эксплуатации устанавливается равным 12 месяцам, при условии, что силовой агрегат/двигатель, принят техническим контролем ОАО «Автодизель» (ЯМЗ) и/или ООО «Силовые агрегаты Группа ГАЗ», имеет в сопроводительном документе (паспорте) его штамп, владельцем соблюдены требования в части гарантийного срока хранения. Гарантийный срок эксплуатации силового агрегата/двигателя, поставляемого в запасные части, исчисляется с даты ввода в эксплуатацию или с даты установки на изделие (согласно отметки в подтверждающем документе). В случае невозможности определить дату ввода двигателя в эксплуатацию и дату установки на изделие, гарантийный срок исчисляется с даты продажи двигателя конечному потребителю.

Работы по замене или установке силового агрегата/двигателя на изделие либо взамен аналогичного по модели и модификации, либо предназначенного для использования в составе изделия, соответствующей модели и модификации, должны быть произведены с сохранением моторных систем (без модернизации) на СЦ ООО «Силовые агрегаты - Группа ГАЗ». В случае невозможности приобретения аналогичного по модели и модификации силового агрегата/двигателя, для сохранения гарантии необходимо письменно согласовать с ООО «Силовые агрегаты - Группа ГАЗ» модель и комплектацию устанавливаемого силового агрегата/двигателя.

Гарантийный срок хранения на силовые агрегаты/двигатели, поставляемые в запасные части, исчисляется с даты изготовления или с даты консервации ООО «Силовые агрегаты - Группа ГАЗ» и/или ОАО «Автодизель» раздела «Консервация» паспорта двигателя, и составляет:

- на прошедшие наружную консервацию в течение 6 месяцев;
- на прошедшие полную консервацию в течение 12 месяцев.

По истечении указанных сроков необходимо ввести силовой агрегат/двигатель в эксплуатацию, либо провести его переконсер-

вацию в соответствии с разделом «Консервация и расконсервация» настоящего руководства по эксплуатации.

На все ремонтные работы, проведенные в рамках гарантии, а так же на детали, узлы и агрегаты, замененные при выполнении указанных работ, действует гарантия до окончания срока действия гарантии на новый двигатель.

Гарантийные обязательства изготовителя утрачивают силу, если имеет место одно из следующих обстоятельств:

- применение силового агрегата/двигателя на изделиях, его установка на которые не согласована с изготовителем ОАО «Автодизель» (ЯМЗ);
- эксплуатация силового агрегата/двигателя с нарушением указаний настоящего руководства по эксплуатации;
- не выполнение или несвоевременное или не полное выполнение планового технического обслуживания на СЦ в объемах и в сроки, указанные в настоящем руководстве по эксплуатации и «Сервисной книжке»;
- самостоятельная установка, замена силового агрегата/двигателя, самостоятельный демонтаж, разборка и ремонт деталей, узлов, агрегатов или силового агрегата/двигателя, включая изменение программного обеспечения, заводских настроек, параметров электронных блоков;
- внесения в силовой агрегат/двигатель конструктивных изменений без согласования с изготовителем OAO «Автодизель» (ЯМЗ);
 - повреждения заводской пломбировки узлов и агрегатов;
- эксплуатация силового агрегата/двигателя при выявленных несоответствиях, заявленным в Руководстве по эксплуатации требованиям и характеристикам;
- выявленное несоответствие возникло в связи с проведением ремонта или ТО не на СЦ, аттестованном ООО «Силовые агрегаты Группа ГАЗ».

Гарантия не распространяется на:

- силовой агрегат/двигатель, изготовленный не на ОАО «Автодизель» (ЯМЗ);
- неисправности, возникшие в результате ненадлежащего проведения ТО (нарушении требований Руководства по эксплуатации силового агрегата/двигателя) или ремонта. Претензии предъявляются к сервисному центру, проводившему обслуживание или ремонт;
- неисправности в результате применения не рекомендованных изготовителем эксплуатационных материалов (масел, топлива,

охлаждающих жидкостей и т.д.) или в результате эксплуатации при недостатке эксплуатационных материалов (охлаждающей жидкости, масла и т.д.) в связи с несвоевременным обнаружением утечки или повышенного расхода;

- повреждения, возникшие в результате дорожно-транспортного происшествия, ударов, царапин, попадания камней и других твердых предметов, а так же действия третьих лиц;
- расходные материалы, в том числе смазочные материалы и эксплуатационные жидкости всех систем двигателя, заменяемые в процессе проведения ТО или по мере необходимости.

КАК ВОСПОЛЬЗОВАТЬСЯ ГАРАНТИЕЙ

При обнаружении признаков неисправности владельцу необходимо:

- Немедленно прекратить дальнейшую эксплуатацию силового агрегата/двигателя*.
- Без задержек обратиться к ближайшему дилеру/СЦ ООО "Силовые агрегаты Группа ГАЗ с гарантийной рекламацией, в которой необходимо указать:
 - а) полное наименование организации, эксплуатирующей изделие;
- б) почтовый адрес (область, район, почтовое отделение), контактный телефон, название ближайшей железнодорожной станции или пристани, код грузополучателя;
- в) завод изготовитель, тип и марку изделия, номер шасси, на которое установлен двигатель;
- г) модель и номер силового агрегата (двигателя), номер топливного насоса, номер коробки передач, пробег изделия в километрах или наработку в часах;
- д) условия выявления и возникновения отказа, характер, внешнее проявление, диагностические параметры несоответствия или отказа;
 - е) используемые эксплуатационные материалы;
 - ж) дату получения изделия, силового агрегата (двигателя).
 - Предъявить:
- а) «Сервисную книжку» (гарантийный талон, формуляр или документ их заменяющий), правильно заполненную и содержащую всю информацию о технике и о проведенных технических обслуживаниях;
- б) «Свидетельство о регистрации транспортного средства» и/или другие документы, подтверждающие правомочность потребителя предъявлять гарантийную рекламацию;
- в) гарантийное письмо, в котором потребитель обязуется возместить все расходы дилера/СЦ в случае признания рекламации необоснованной.

• Предъявить силовой агрегат/двигатель в составе техники для подтверждения наличия неисправности, попадающей под условия предоставления гарантии. При невозможности предъявить изделие, на которое установлен силовой агрегат/двигатель, необходимо обратиться к ближайшему дилеру/СЦ ООО "Силовые агрегаты - Группа ГАЗ" для организации ремонта на месте, для чего выслать от имени владельца (собственника) изделия телеграфное или почтовое извещение/рекламацию.

При получении извещения/рекламации дилер или СЦ сообщает потребителю в однодневный срок порядок рассмотрения рекламации.

Дилер или СЦ совместно с потребителем рассматривает рекламацию и оформляет акт-рекламацию. Рассмотрение рекламации (осмотр, демонтаж, разборка и т.п.), а также выезд специалиста по месту нахождения потребителя, проводится для потребителя бесплатно только в случае признания рекламации обоснованной.

В случае принятия рекламации по гарантии, дилер или СЦ восстанавливает силовой агрегат, двигатель в минимальный разумный срок. Потребитель подписывает акт-рекламацию от имени владельца (собственника).

При возникновении разногласий между дилером/СЦ (или представителями ООО «Силовые агрегаты - Группа ГАЗ») и потребителем, в акте рекламации отражается особое мнение несогласной стороны и акт подписывается обеими сторонами. По запросу ООО «Силовые агрегаты - Группа ГАЗ» дилер или СЦ направляет запрашиваемые детали или узлы двигателя на исследование, по результатам которого принимается окончательное решение. Высылаемые на исследования детали и сборочные единицы собственнику не возвращаются только в случае их исследования разрушающим методом или признании рекламации обоснованной.

*Примечание: Все риски, и затраты, связанные с неисправностями или поломками силового агрегата/двигателя в результате использования технически неисправного силового агрегата/двигателя, несет владелец.

ЗАКЛЮЧЕНИЕ

В случае отсутствия в Вашем регионе эксплуатации официального дилера ООО «Силовые агрегаты - Группа ГАЗ» или СЦ, Вы должны выслать телеграфное или почтовое извещение (рекламацию) от имени владельца (собственника) изделия в Управление по гарантийному и сервисному обслуживанию ООО «Силовые агрегаты - Группа ГАЗ» для рассмотрения рекламации.

Порядок предъявления и удовлетворения рекламаций на продукцию, используемую в составе военной техники, осуществляется согласно ГОСТ РВ 15.703-2005.

Ваши предложения по совершенствованию сервисного сопровождения продукции, возникшие в процессе эксплуатации и рассмотрения отказов продукции вопросы, разногласия и замечания направлять по адресу:

150040, г. Ярославль, пр. Октября, 75, ООО «Силовые агрегаты - Группа ГАЗ», Управление по гарантийному и сервисному обслуживанию. Факс (4852) 588128, 586888.

УТИЛИЗАЦИЯ

Под утилизацией понимается процесс уничтожения или ликвидации машин и оборудования путем разбора их на части, переработки, захоронения и другими способами, включая подготовительные процессы, предваряющие процесс утилизации машин и оборудования.

При проведении утилизации необходимо соблюдать требования техники безопасности при слесарно-механических работах. Персонал должен иметь необходимую квалификацию и пройти соответствующее обучение.

УТИЛИЗАЦИЯ СОСТАВНЫХ ЧАСТЕЙ ИЗДЕЛИЯ ПРИ ПРОВЕДЕНИИ ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ

Утилизации подлежат: отработанное масло, дизельное топливо, бензин, растворители, используемые в соответствии с требованиями настоящего руководства по эксплуатации, а также фильтрующие элементы масла и топлива, вышедшие из строя ремни, прокладки, ветошь.

Отработанное масло, использованные бензин, дизельное топливо, растворители собираются в предназначенные для этих целей емкости с последующей отправкой для переработки на завод. Фильтрующие элементы — снимаются крышки, бумага режется по образующей. Крышки, сердечник сдаются в металлолом, бумага прессуется и отправляется на свалку. Использованная ветошь, снятые резино - технические изделия, паронитовые и асбестовые прокладки прессуются и отправляются на свалку.

УТИЛИЗАЦИЯ ИЗДЕЛИЯ ПРИ СПИСАНИИ

При отправки изделия на утилизацию, оно должно быть помыто снаружи. Изделия, загрязненные в процессе эксплуатации токсическими веществами, радиоактивными аэрозолями при выведении их из использования для последующей утилизации, должны пройти обязательную обработку по обезвреживанию специальными растворами (составом) в зависимости от токсических физико-химических свойств, вредных веществ в соответствии с действующими санитарными нормами.

Масло, охлаждающая жидкость, топливо должны быть слиты. Все детали, узлы, агрегаты, расположенные снаружи изделия должны быть надежно закреплены. Штатные приспособления для подъема должны быть в соответствии с технической документацией.

Основным методом утилизации является механическая разборка. Изделие полностью подвергается разборке, после чего производится рассортировка деталей в зависимости от материала в соответствии со сведениями содержания цветных металлов и сплавов, приведенных в приложении 5 руководства по эксплуатации.

Все неметаллическое прессуется и отправляется на свалку. Других требований по утилизации силовых агрегатов, двигателей, сцеплений и коробок передач не предъявляется.

В местах проведения утилизации должна находиться необходимая документация, в т.ч. и по технике безопасности.

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ А КОМПЛЕКТ ПОСТАВКИ

В комплект поставки силового агрегата, двигателя, идущего на комплектацию изделия, входят эксплуатационные документы, запасные части, инструмент и принадлежности (ЗИП), приведенные в таблице.

Наименование		
ЭКСПЛУАТАЦИОННЫЕ ДОКУМЕНТЫ:		
1. Паспорт двигателя	1	
2. Руководство по эксплуатации	1	
3. Ведомость эксплуатационных документов	1	
4. Пакет для паспорта	1	
5. Пакет для технической документации	1	
ЗАПАСНЫЕ ЧАСТИ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТИ (ЗИП):		
1. Инструмент водителя и приспособления (комплект):	1	
 Ключ торцовый 19 	1	
– Вороток	1	
 Ключ торцовый 14 	1	
– Вороток	1	
 Ключ торцовый 12 	1	
– Вороток	1	
 Ключ торцовый 10 	1	
 Ключ торцовый 24 	1	
 Щуп в сборе 	1	
 Съемник форсунки 	1	
 Сумка для инструмента 	1	
2. Комплект запасных частей гарантийный одиночный	1	
3. Изделия, используемые при монтаже двигателя на		
машину	1	

К поставляемым в запасные части двигателям, силовым агрегатам инструмент и приспособления не прикладываются.

Комплект поставки может быть изменен предприятием-изготовителем по согласованию с предприятием - потребителем.

приложение б

КОНСЕРВАЦИЯ И РАСКОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ ПРИ ХРАНЕНИИ НА СКЛАДАХ

НАЗНАЧЕНИЕ КОНСЕРВАЦИИ

Консервация производится с целью предохранения от коррозии внутренних и наружных поверхностей силового агрегата/ двигателя во время транспортировки и хранения на складе путем нанесения на эти поверхности защитной пленки ингибитора коррозии или упаковки.

Антикоррозийная обработка и упаковка обеспечивают хранение силового агрегата/двигателя в соответствии с настоящим разделом с момента отгрузки с завода, при условии хранения в законсервированном и упакованном виде в сухом, приспособленном для хранения помещении, без кислот, щелочей и других химикатов.

ТРЕБОВАНИЯ К УЧАСТКУ КОНСЕРВАЦИИ

Помещение, в котором производится консервация, должно удовлетворять следующим требованиям:

- должно быть сухим, хорошо вентилируемым, освещенным и отапливаемым:
 - относительная влажность воздуха не должна превышать 70%;
- температура должна поддерживаться не ниже 15°C. Резкого колебания температуры и влажности в течение суток не допускается;
- помещение должно содержаться в чистоте и быть изолировано от проникновения в него газов и паров, способных вызвать коррозию, категорически запрещается даже кратковременное хранение материалов, способных вызвать коррозию, как-то: кислот, щелочей, химикатов, аккумуляторов и других.

Помещение оборудуется: столом, обитым текстолитом, винипластом, линолеумом или алюминиевыми листами; нагревательной аппаратурой, обеспечивающей автоматическое поддержание заданной температуры смеси, предназначенной для консервации; посудой с крышками для хранения консервационных материалов; термометрами и психрометрами для контроля за температурой и влажностью в помещении.

Все операции по консервации двигателя выполнять на стенде для переборки двигателя, обеспечивающем плавный поворот двигателя на 360° вокруг своей оси.

Силовой агрегат, поступающий на консервацию, должен быть чистым и иметь температуру, равную или выше температуры помещения для консервации. Резкие колебания температуры при консервации не допускаются, так как это может привести к конденсации влаги на консервируемой поверхности.

В период консервации не производить такие работы, при которых консервируемая поверхность может загрязниться металлической, лакокрасочной и другой пылью.

Для консервации и упаковки двигателя на участке консервации должны иметься следующие материалы:

- моторное масло летнее одной из марок, указанных в разделе "Эксплуатационные материалы";
- защитная присадка-ингибитор (АКОР-1 ГОСТ 15171-78; Мифол по ТУ 0257-002-00148820-94; Сламин по ТУ 38.401-79-90. При приготовлении консервационных смесей присадку Сламин применять в количестве вдвое меньшем, чем указано в настоящем разделе);
 - Литол-24 ГОСТ 21150-87;
 - дизельное топливо ГОСТ 305-82;
 - консервационная смазка ПВК ГОСТ 19537-83;
 - консервационная смазка ЗЭС ТУ 38-101-474-74;
 - водонепроницаемая бумага ГОСТ 8828-89;
 - полиэтиленовая пленка толщиной 0,2 мм ГОСТ 10354-82;
 - рубероид ГОСТ 10923-82;
 - парафинированная бумага ГОСТ 9569-79;
 - полиакриламид ТУ 7.04.01-72;
 - двухромовокислый калий ГОСТ 2652-78;
 - сода кальцинированная ГОСТ 5100-85;
 - лента липкая полиэтиленовая ГОСТ 20477-86;
 - шпагат ГОСТ 17308-88;
 - уайт-спирит ГОСТ 3134-78.

Присутствие кислот и влаги в консервационных материалах не допускается. В случае присутствия в масле влаги ее удалить нагреванием масла закрытым пламенем до температуры 105–120°C до полного прекращения пенообразования. Из топлива влагу удалять отстаиванием.

Деревянные заглушки, пробки, планки, применяемые при операциях консервации, пропитать рабоче-консервационным маслом при температуре 105–120°С до прекращения пенообразования.

ВНУТРЕННЯЯ КОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

Внутренняя консервация двигателя состоит из консервации систем охлаждения, питания, смазки, внутренних поверхностей и цилиндров. Производить ее в следующем порядке:

1. Слить охлаждающую жидкость из двигателя, промыть систему охлаждения пассивирующим раствором и просушить продувкой сжатым воздухом до тех пор, пока через пароотводящее отверстие на правой водяной трубе не пойдет воздух без капель пассивирующего раствора.

Для приготовления **пассивирующего раствора**, отвешенное количество измельченных сухих кальцинированной соды (3–7 г/л воды) и двухромовокислого калия (0,2–0,4 г/л воды) растворить в небольшом количестве воды, нагретой до температуры 40–50°С, содержимое вылить в емкость с соответствующим количеством воды, добавить полиакриламид (0,05–0,07 г/л воды) и тщательно перемешать. При повторном использовании пассивирующий раствор профильтровать от шлама.

- 2. Укрепить двигатель на поворотном стенде и плотно закрыть отверстие впускного тракта двигателя.
- 3. Слить масло из картера двигателя, а также масло из топливного насоса высокого давления. Слив масла из топливного насоса высокого давления производить через отверстие для отвода масла. В случае консервации силового агрегата выполнить операции п.1 раздела «Внутренняя консервация коробки передач».
- 4. Провести консервацию системы питания, системы смазки и внутренних поверхностей двигателя.

Консервацию системы питания производить смесью дизельного топлива с защитной присадкой-ингибитором, консервацию системы смазки и внутренних поверхностей двигателя – рабоче-консервационным маслом.

Для приготовления консервационной смеси топлива отмерить требуемое количество дизельного топлива по ГОСТ 305 – 82 и требуемое количество защитной присадки-ингибитора (из расчета 15% от приготовляемого количества смеси), добавить к дизельному топливу подогретую до температуры 60–70°С присадку при интенсивном перемешивании топлива до получения однородной смеси. Смесь нагреть до температуры 70–80°С. Разогрев смеси не обязателен, если для ее приготовления используются средства механизации.

Универсальное рабоче-консервационное масло приготовлять путем добавления к товарным сортам дизельного масла защитной присадки-ингибитора. Для приготовления рабоче-консервационного масла:

- отмерить требуемое количество дизельного масла и нагреть его до температуры 70–80°С;
- отмерить требуемое количество присадки-ингибитора из расчета 10% от приготовляемого количества рабоче-консервационного масла;
- добавить к дизельному маслу подогретую до температуры 60– 70°С присадку при интенсивном перемешивании масла до получения однородной смеси.

Однородность смеси определять отсутствием черных или темно-коричневых разводов на струе масла, стекающей с мешалки, а также отсутствием на дне и стенках емкости осадков или сгустков.

Для приготовления смеси можно применять маслозаправочный агрегат АЗ-1Э или баки-смесители конструкций БС-30, ППС-7500 и т. д. (в этом случае разогрев присадки необязателен). При приготовлении более 200 л смеси рекомендуется использовать маслозаправщик МЗ-51 или водомаслозаправщик ВМЗ-157В. Операцию смешения в этом случае производить, используя маслонасосы и систему подогрева масла.

ВНИМАНИЕ! КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ ЗАЩИТНУЮ ПРИСАДКУ-ИНГИБИТОР ЗАЛИВАТЬ НЕПОСРЕДСТВЕННО В КАРТЕР ДВИГАТЕЛЯ, ТОПЛИВНЫЙ НАСОС ВЫСОКОГО ДАВЛЕНИЯ И РЕГУЛЯТОР, ТАК КАК ИЗ-ЗА БОЛЬШОЙ ПРИЛИПАЕМОСТИ И ВЯЗКОСТИ ПРИСАДКА ОСТАНЕТСЯ НА СТЕНКАХ ЗАЛИВНОЙ ГОРЛОВИНЫ ИЛИ КАРТЕРА И НЕ СМЕШАЕТСЯ С МАСЛОМ.

Консервацию производить в следующем порядке:

- а) залить в отверстие для отвода масла из топливного насоса высокого давления рабоче-консервационное масло, имеющее температуру 70–80°С до уровня этого отверстия. Консервацию топливного насоса высокого давления производить из емкости, предназначенной для консервации цилиндров. Установить на место трубку отвода масла из топливного насоса;
- б) повернуть двигатель вниз головками цилиндров, вывернуть из сливного отверстия масляного картера пробку и залить рабоче-консервационное масло, имеющее температуру 70–80°С, в количестве, указанном в разделе «Техническая характеристика» настоящего руководства. В случае консервации силового агрегата выполнить операции п.2 раздела «Внутренняя консервация коробки передач». Установить двигатель вверх головками цилиндров;

- в) к топливоподкачивающему насосу, в месте подвода топлива, подсоединить трубку и погрузить ее в емкость с хорошо профильтрованным чистым дизельным топливом, имеющим температуру 70–80°С;
- г) прокачать ручным топливопрокачивающим насосом систему питания до тех пор, пока из наконечника сливной трубки не пойдет чистое, без пузырьков воздуха, топливо (скоба останова регулятора должна находиться в положении включенной подачи. На двигателях с электронной системой управления топливоподачей демонтировать колпак рейки, выдвинуть рейку до упора и зафиксировать ее в этом положении). Для прокачки можно использовать специальный насос:
- д) прокрутить коленчатый вал по часовой стрелке (если смотреть с переднего торца двигателя) не менее 6 оборотов (в случае консервации силового агрегата выполнить операции п.3 раздела «Внутренняя консервация коробки передач»), скоба регулятора при этом должна находиться в положении выключенной подачи;
- е) повернуть двигатель 2-3 раза вокруг горизонтальной оси в обе стороны. В случае консервации силового агрегата эту операцию допускается не выполнять.
- ж) отсоединить от топливоподкачивающего насоса трубку подвода топлива:
- з) слить рабочее-консервационное масло из топливного насоса (см. пункт 3), поставить на место трубку отвода масла;
- 5. Консервацию цилиндров производить в следующей последовательности:
 - а) снять соединительный патрубок впускных коллекторов;
- б) повернуть коленчатый вал так, чтобы впускные клапаны консервируемого цилиндра были открыты;
- в) залить в цилиндры через отверстия во впускных коллекторах с помощью гибкого шланга 60-70 мл рабоче-консервационного масла, имеющего температуру $70\text{-}80^{\circ}\mathrm{C}$;

Примечание: Консервацию цилиндров производить рабочеконсервационным маслом из емкости, предназначенной только для консервации цилиндров;

- г) повторить операции «б» и «в» для всех цилиндров;
- д) прокрутить коленчатый вал по часовой стрелке (если смотреть с переднего торца двигателя) не менее 6 оборотов (в случае консервации силового агрегата выполнить операции п.3 раздела «Внутренняя консервация коробки передач»), скоба регулятора при этом должна находиться в положении выключенной подачи;

- е) установить на место соединительный патрубок впускных коллекторов.
- 6. Откачать рабоче-консервационное масло из картера двигателя и слить консервационную смесь из топливного фильтра тонкой очистки;

ВНУТРЕННЯЯ КОНСЕРВАЦИЯ КОРОБКИ ПЕРЕДАЧ

- 1. Отвернуть пробки сливных отверстий, слить масло из картера коробки передач, после чего пробки завернуть.
- 2. Отвернуть пробку заливного отверстия и залить 8 л рабочеконсервационного масла, имеющего температуру 70–80°С, после чего завернуть пробку.
- 3. Прокрутить первичный вал коробки передач не менее 6 оборотов, после чего слить масло и завернуть пробки сливных отверстий.

Срок действия внутренней консервации составляет 12 месяцев от даты ее проведения. Общее время хранения силового агрегата/ двигателя не должно превышать 24 месяца с даты изготовления двигателя. По истечении указанного срока силовой агрегат/двигатель должен быть введен в эксплуатацию, в противном случае он снимается с гарантийного сопровождения со стороны завода-изготовителя.

НАРУЖНАЯ КОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

- 1. На двигателе, не проходящем внутреннюю консервацию, допускается смазать деревянные заглушки рабоче-консервационным маслом. Закрыть все отверстия полиэтиленовой пленкой.
- 2. Снять наружную крышку люка картера сцепления, установить заглушку и поставить крышку люка на место.
- 3. Протереть наружные поверхности двигателя, сцепления, коробки передач чистой ветошью, смоченной уайт-спиритом, до полного удаления грязи и масла, а затем вытереть насухо. Допускается мойка силового агрегата с последующей обдувкой сжатым воздухом.
- 4. Все резьбовые отверстия двигателя и коробки передач, резьбовые отверстия и клеммы стартера, генератора, датчика тахометра смазать рабоче-консервационным маслом или смазками ПВК или 3ЭС.
 - 5. При необходимости подкрасить силовой агрегат.
- 6. Смазать смесью рабоче-консервационного масла со смазкой ПВК или 3ЭС:
- фланец вторичного вала коробки передач, вал вилки выключения сцепления и ступицу привода агрегатов, после чего фланец, вал вилки и ступицу защитить водонепроницаемой бумагой;

- наружные поверхности маховика (для двигателей без сцепления и коробки передач), после чего закрыть упаковочной бумагой, оклеить или обвязать шпагатом;
- привалочные поверхности картера маховика (для двигателей без сцепления и коробки передач), после чего закрыть водонепроницаемой бумагой и обвязать шпагатом;
- привалочную поверхность картера маховика, посадочные шейки переднего носка коленчатого вала и привода вентилятора, закрыть (обернуть) водонепроницаемой бумагой и обвязать шпагатом у двигателей, неукомплектованных коробкой передач, шкивом коленчатого вала и вентилятором.
- 7. Генератор, передний носок коленчатого вала обернуть парафинированной бумагой и обвязать шпагатом.
- 8. Оклеить липкой полиэтиленовой лентой отверстия, закрытые пробками и транспортными крышками.
- 9. От консервации предохранить генератор, крыльчатку вентилятора, внутренние и наружные поверхности сцепления, а также резинотехнические детали. В случае попадания смазки на резинотехнические детали их тщательно протереть сухой ветошью.

Срок действия наружной консервации составляет 3 месяца от даты ее проведения. Наружная консервация проводиться через шесть месяцев с даты изготовления двигателя, далее через каждые три месяца.

Примечание: Через шесть месяцев с даты изготовления двигателя дополнительно провести консервацию топливной системы в объеме, указанном в разделе «Внутренняя консервация двигателя» настоящего руководства по эксплуатации.

Общее время хранения силового агрегата/двигателя не должно превышать 12 месяцев с даты изготовления двигателя. По истечении указанного срока силовой агрегат/двигатель должен быть введен в эксплуатацию или проведена внутренняя консервация, в противном случае двигатель снимается с гарантийного сопровождения со стороны завода-изготовителя.

По истечении срока действия внутренней консервации силовой агрегат/двигатель должен быть введен в эксплуатацию, в противном случае силовой агрегат/двигатель снимается с гарантийного сопровождения со стороны завода-изготовителя.

УПАКОВКА СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

1. Законсервированный силовой агрегат установить на деревянную подставку и укрепить на ней.

- 2. Силовой агрегат, прошедший внутреннюю консервацию, упаковать вместе с подставкой полиэтиленовой пленкой и надежно укрепить.
- 3. На консервацию и упаковку каждого силового агрегата составить акт.

АКТ на консервацию и уг	аковку двигателя ЯМЗ
Двигатель №	
Консервацию в соответствии с	с руководством на силовые агрегаты
ЯМЗ производил	
	дата и подпись
Проверил контролер ОТК	
	дата и штамп
Упаковку производил	·
	дата и подпись
Проверил контролер ОТК	
	дата и штамп
Срок переконсервации	

- 4. Транспортировку законсервированных силовых агрегатов производить в крытых грузовых автомобилях или вагонах, не использовавшихся ранее для перевозки кислот и других химикатов, способных вызвать коррозию.
- 5. Заполнить соответствующий раздел паспорта о проведенной консервации.

ВНУТРЕННЯЯ КОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ В СОСТАВЕ ИЗДЕЛИЯ

Хранение силового агрегата/двигателя в составе изделия может быть кратковременным и длительным.

При кратковременном хранении изделие находится или на предприятии-изготовителе, или отмечается перерыв в его эксплуатации от трех месяцев до одного года.

Длительное хранение – отмечается перерыв в эксплуатации изделия более одного года.

Подготовка к кратковременному хранению двигателей, введенных в эксплуатацию, применяется, если перерыв в эксплуатации двигателя планируется до шести месяцев, а при выполнении дополнительных работ до 12 месяцев.

Подготовка к кратковременному хранению двигателей, не введенных в эксплуатацию, применяется, если ввод в эксплуатацию двигателя планируется в течение 12 месяцев с даты изготовления двигателя.

Подготовка к длительному хранению двигателей, введенных в эксплуатацию, применяется, если перерыв в эксплуатации двигателя планируется до 12 месяцев.

Подготовка к длительному хранению двигателей, не введенных в эксплуатацию, применяется, если ввод в эксплуатацию двигателя планируется в течение 18 месяцев с даты изготовления двигателя.

Ниже приводится порядок проведения консервации силового агрегата/двигателя в составе изделия при кратковременном и длительном хранении.

КРАТКОВРЕМЕННОЕ ХРАНЕНИЕ

Проведение переконсервации при кратковременном хранении двигателя в составе изделия, введенного в эксплуатацию, производится через шесть месяцев от даты постановки изделия на хранение, далее через каждые три месяца. При этом общее время хранения должно быть не более 12 месяцев.

Проведение переконсервации при кратковременном хранении двигателя в составе изделия, не введенного в эксплуатацию, проводиться через шесть месяцев с даты изготовления двигателя, а далее через каждые три месяца. При этом общее время хранения должно быть не более 12 месяцев с даты изготовления двигателя.

Подготовка двигателя к кратковременному хранению осуществляется пуском двигателя.

При проведении каждого пуска двигателя во время хранения необходимо руководствоваться разделом руководства по эксплуатации «Пуск, работа и остановка силового агрегата».

После пуска двигателя дать возможность проработать ему 10-15 минут при средней частоте вращения на холостом ходу, после чего двигатель остановить. После работы масло, топливо и охлаждающую жидкость слить. Допускается масло, топливо и охлаждающую жидкость (если используется тосол) не сливать.

Провести наружную консервацию двигателя.

По окончании вышеуказанных работ вносится соответствующая запись в паспорт на двигатель (раздел «Консервация двигателя») с указанием марки масла, залитого в двигатель.

По истечении 12 месяцев изделие должно быть полностью введено в эксплуатацию или проведена внутренняя консервация, обеспечивающая длительное хранение на срок один год.

По истечении срока действия внутренней консервации, двигатель должен быть введен в эксплуатацию, в противном случае он снимается с гарантийного сопровождения со стороны завода-изготовителя.

ДЛИТЕЛЬНОЕ ХРАНЕНИЕ

Внутренняя консервация двигателя состоит из консервации систем питания, смазки внутренних поверхностей, в том числе коробки передач, и промывки системы охлаждения пассивирующим раствором. Если система охлаждения заполнена тосолом, то операция по промывке не проводится.

Такой способ консервации обеспечивает возможность хранения силовых агрегатов или двигателей в составе изделия без дополнительных воздействий сроком до 12 месяцев, т.е. на один год.

Консервацию системы питания производить смесью дизельного топлива с защитной присадкой-ингибитором.

Консервацию системы смазки внутренних поверхностей, цилиндров, воздухоочистителя и коробки передач проводить рабоче-консервационным маслом. Приготовление консервационных смесей приведено выше.

Консервацию силового агрегата производить в следующей последовательности:

- 1. Отвернуть пробку сливного отверстия и слить масло из картера двигателя. Пробку завернуть.
- 2. Отвернуть пробки сливных отверстий и слить масло из картера коробки передач. Пробки завернуть.
- 3. Слить масло из топливного насоса высокого давления. **Примечание:** Слив масла производить путем отсоса через отверстие для отвода масла, предварительно отсоединив трубку.
- 4. Слить охлаждающую жидкость из системы охлаждения двигателя при снятой пробке заливной горловины, закрыть краники и заправить систему охлаждения пассивирующим раствором в количестве, указанном в разделе «Техническая характеристика» настоящего руководства. Закрыть пробку заливной горловины.
- 5. Залить в отверстие для отвода масла из топливного насоса высокого давления рабоче-консервационное масло, имеющее температуру 70–80°С до уровня этого отверстия. Консервацию топливного насоса высокого давления производить из емкости, предназначенной для консервации цилиндров. Установить на место трубку отвода масла из топливного насоса.
- 6. Залить в картер двигателя, до верхней метки указателя уровня масла, рабоче-консервационное масло, имеющее температуру 70-80°C. Закрыть крышку маслоналивного патрубка.
- 7. Залить в картер коробки передач 8 л рабоче-консервационного масла при температуре 70-80°C. Завернуть пробку.

- 8. Запустить двигатель и проработать в течение 3-5 минут на режиме 1400-1600 мин $^{-1}$ с включенным сцеплением на нейтральной передаче.
- 9. Герметизировать впускную систему двигателя, исключив попадание в нее посторонних предметов, пыли и влажного воздуха:
- для двигателей, воздушный фильтр которых установлен непосредственно на впускном тракте (инерционно-масляный фильтр), закрыть его влагонепроницаемой пленкой;
- для двигателей, воздушный фильтр которых установлен вне двигателя, перекрыть трассу подвода воздуха к воздушному фильтру, установив заглушку и закрыв ее влагонепроницаемой пленкой.
 - 10. Слить топливо из фильтров грубой и тонкой очистки.

Примечание: Допускается топливо из фильтра грубой очистки не сливать.

- 11. Отсоединить сливную трубку от фильтра тонкой очистки топлива и подводящую трубку от фильтра грубой очистки топлива.
- 12. Подсоединить к фильтру грубой очистки топлива резиновый шланг и погрузить в емкость с чистым дизельным топливом.
- 13. Подсоединить к наконечнику фильтра тонкой очистки топлива резиновый шланг (исключить подсос воздуха), опустив другой конец в емкость для слива топлива.
- 14. Прокачать ручным топливопрокачивающим насосом систему питания до тех пор, пока из наконечника сливной трубки не пойдет чистое, без пузырьков воздуха, дизельное топливо (скоба останова регулятора должна находиться в положении включенной подачи. На двигателях с электронной системой управления топливоподачей демонтировать колпак рейки, выдвинуть рейку до упора и зафиксировать ее в этом положении). Для прокачки можно использовать специальный насос.
- 15. Отсоединить шланги от фильтров грубой и тонкой очистки топлива. Подсоединить сливную трубку к фильтру тонкой очистки топлива и подводящую к фильтру грубой очистки топлива, предварительно законсервировав внутренние полости указанных трубок. Слить консервационную смесь из фильтров грубой и тонкой очистки топлива.
- 16. Консервацию цилиндров производить в следующей последовательности:
 - а) снять соединительный патрубок впускных коллекторов;
- б) повернуть коленчатый вал так, чтобы впускные клапаны консервируемого цилиндра были открыты;

в) залить в цилиндры через отверстия во впускных коллекторах с помощью гибкого шланга 60-70 мл рабоче-консервационного масла, имеющего температуру 70-80°С;

Примечание: Консервацию цилиндров производить рабочееконсервационным маслом из емкости, предназначенной только для консервации цилиндров;

- г) повторить операции «б» и «в» для всех цилиндров;
- д) прокрутить коленчатый вал по часовой стрелке (если смотреть с переднего торца двигателя) не менее 6 оборотов (в случае консервации силового агрегата выполнить операции п.3 раздела «Внутренняя консервация коробки передач») при выключенном «выключателе массы» изделия, скоба останова регулятора при этом должна находиться в положении выключенной подачи.

Примечание: Для двигателей, оборудованных топливным насосом высокого давления с механическим регулятором, допускается прокрутка коленчатого вала стартером в течение 20-30 секунд. При этом скоба останова регулятора должна находиться в положении выключенной подачи.

Примечание: В случае появления вспышки в цилиндрах повторно произвести консервацию согласно требованиям.

- е) установить на место соединительный патрубок впускных коллекторов.
- 17. Слить рабочее-консервационное масло из топливного насоса (см. пункт 3), поставить на место трубку отвода масла.
- 18. Слить рабоче-консервационное масло из картера двигателя, картера КП. Завернуть пробки.
- 19. Слить из системы охлаждения двигателя пассивирующий раствор при снятой крышке заливной горловины. После этого закрыть крышку заливной горловины и сливные краники.

Примечание: Разрешается слив пассивирующего раствора производить после выхода автомобиля из помещения.

20. В картер двигателя и картер коробки передач залить рабочую смазку в соответствии с руководством по эксплуатации.

ВНИМАНИЕ! ПРОКРУТКА СИЛОВОГО АГРЕГАТА ПОСЛЕ КОНСЕРВАЦИИ НЕ РАЗРЕШАЕТСЯ.

- 21. Провести наружную консервацию силового агрегата/ двигателя.
- 22. Проведение работ по консервации зафиксировать в паспорте на двигатель.

Срок действия внутренней консервации составляет 12 месяцев от даты ее проведения.

Общее время хранения силового агрегата/двигателя не должно превышать 24 месяца с даты изготовления двигателя. По истечении указанного срока силовой агрегат/двигатель должен быть введен в эксплуатацию, в противном случае двигатель снимается с гарантийного сопровождения со стороны завода-изготовителя.

РАСКОНСЕРВАЦИЯ СИЛОВОГО АГРЕГАТА/ДВИГАТЕЛЯ

- 1. Снять упаковочную бумагу, полиэтиленовую пленку и полиэтиленовую ленту с липким слоем с деталей, узлов и агрегатов.
- 2. Протереть чистой ветошью, смоченной бензином растворителем, поверхность маховика (на двигателях, неукомплектованных коробкой передач и сцеплением), поверхность ручьев шкивов коленчатого вала и генератора до полного удаления защитной смазки, а затем протереть насухо.
 - 3. Снять транспортные заглушки и пробки.
 - 4. Установить на место снятые при консервации детали.
- 5. Установить двигатель/силовой агрегат на шасси изделия или стенл.
- 6. При вводе в эксплуатацию специальной расконсервации внутренних поверхностей двигателя не производить.

Двигатель подготовить к пуску в соответствии с требованиями руководства по эксплуатации.

ТЕХНИКА БЕЗОПАСНОСТИ И ПРОТИВОПОЖАРНЫЕ МЕРОПРИЯТИЯ ПРИ КОНСЕРВАЦИИ И РАСКОНСЕРВАЦИИ

- 1. Консервация производится специальными работниками, получившими соответствующий инструктаж, под руководством лица, ответственного за консервацию, с соблюдением требований охраны труда и противопожарной безопасности.
- 2. Рабочие, обслуживающие ванны консервации, должны быть обеспечены клеенчатыми или брезентовыми фартуками, резиновыми перчатками или рукавицами и приспособлениями, предотвращающими соприкосновение рук с консервирующими материалами. Возле ванны на участке консервации установить деревянные трапы.
- 3. Химикаты хранить на складе химических реактивов в специальной закрытой таре с этикетками и выдавать только лицам, ответственным за приготовление растворов и смесей.
- 4. Запрещается хранение и принятие пищи на участке консервации. Перед принятием пищи тщательно вымыть руки во избежание попадания реактивов в пищу. Запрещается мыть руки в моющих растворах.
- 5. Курение, зажигание спичек и пользование открытым огнем на участке, предназначенном для консервации, категорически запрещается.
- 6. В целях противопожарной безопасности категорически запрещается производить мойку деталей уайт-спиритом или бензином, если предусмотрена только протирка ветошью, смоченной в уайт-спирите или бензине.
- 7. Количество уайт-спирита или бензина на участке консервации не должно превышать сменной потребности. Участки обеспечить необходимыми противопожарными средствами (огнетушителями, ящиком с песком, асбестовыми одеялами и др.).
- 8. Ветошь, смоченную бензином или уайт-спиритом, бывшую в употреблении при протирке деталей, узлов и агрегатов, складывать в металлические ящики с плотно закрывающейся крышкой и надписью «Огнеопасно».

приложение в

МОМЕНТЫ ЗАТЯЖКИ ОСНОВНЫХ РЕЗЬБОВЫХ СОЕДИНЕНИЙ

Резьбовое соединение	Момент затяжки Н·м (кгс·м)
Болты крепления крышек коренных	II iii (ki c iii)
подшипников:	
- вертикальные	430–470 (43–47)
- горизонтальные	100–120 (10–12)
Болт крепления ступицы коленчатого вала	431-490 (44-50)
Болты крепления крышек шатунов	200-220 (20-22)
Болты крепления картера маховика	100-125 (10-12,5)
Болты крепления маховика:	
- с пластинами стоп. под два болта	200-220 (20-22)
- с пластиной под все болты	235–255 (24–26)
Болты крепления кронштейна передней опоры	
двигателя	90-110 (9-11)
Боты крепления верхней крышки блока	
цилиндров	25–32 (2,5–3,2)
Гайки шпилек крепления головки цилиндров	240-260 (24-26)
Гайки крепления осей коромысел	120-150 (12-15)
Болт скобы крепления стартера	70–90 (7–9)
Болты крепления кронштейнов стартера	45-62 (4,5-6,2)
Болты стартера с фланцевым креплением М12	98,1-122,6 (10-12,5)
Гайки скоб крепления форсунок	50-62 (5-6,2)
Гайка крепления муфты опережения впрыска	130-150 (13-15)
Штуцеры топливного насоса высокого давления	100-120 (10-12)
Гайки распылителей форсунок	60-80 (6-8)
Штуцер форсунки	8-10 (8-10)
Гайка крепл. шестерни распределительного вала	270-300 (27-30)
Гайка крепления ведомой шестерни привода	
топливною насоса	140–180 (14–18)
Резьбовые соединения муфты привода топливного насоса высокого давления:	
- болты крепления пластин к ведомой	
полумуфте	32–40 (3,2–4)
- остальныс	44–60 (4,4–6,0)

-	Момент затяжки
Резьбовое соединение	Н⋅м (кгс⋅м)
Гайка оси шкива натяжного устройства привода	II iii (RI ¢ iii)
пневмокомпрессора	120-150 (12-15)
Гайка болта-натяжителя натяжного устройства	
привода компрессора	10-20 (1-2)
Гайки регулировочных винтов коромысел	44-56 (4,4-5,6)
Болты крепления масляного насоса	90-100 (9-10)
Пробка сливная масляного картера	140-160 (14-16)
Болты крепления топливного насоса высокого	20. 26 (2.0. 2.6)
давления	28–36 (2,8–3,6)
Гайки топливопроводов высокого давления	18–25 (1,8–2,5)
Болты крепления турбокомпрессора	36–44 (3,6–4,4)
Болты крепления выпускных коллекторов	36–44 (3,6–4,4)
Болты крепления топливопроводов низкого давления:	
- M10	20-25 (2-2,5)
- M14	40-50 (4-5)
- M16	48-50 (4,8-6)
Болты крепления картера сцепления к картеру	137-157 (14-16)*
коробки передач	216-245 (22-25)**
Болты крепления картера сцепления к картеру маховика M12	70–80 (7–8)
Болты крепления проставки к картеру основной коробки	123–157 (12,5–16)
Болты крепления картера демультипликатора к проставке:	
- предварительная затяжка	20-30 (2-3)
- окончательная затяжка	79–98 (8–10)
Болты крепления верхней крышки картера	35-49 (3,6-5)*
основной коробки	49-54 (5,0-5,5)**
Оси вилки переключения демультипликатора	118-128 (12-13)
Болты крепления крышки первичного вала	23,5–35 (2,4–3,6)
Болты крепления муфты зубчатой низшего	
диапазона к проставке	49–55 (5–5,6)
Болт крепления фланца выходного вала	431–490 (44–50)

Примечание:

^{* -} для коробок передач типа ЯМЗ-238ВМ и ЯМЗ-2381; ** - для коробок передач типа ЯМЗ-239.

ПРИЛОЖЕНИЕ Г

ПРЕДПРОДАЖНАЯ ПОДГОТОВКА

При покупке на ОАО "Автодизель" в запасные части номерных агрегатов (двигатель в сборе, блок цилиндров, коробка передач) требуйте заполнения сервисного талона по предпродажной подготовке.

ПЕРЕЧЕНЬ РАБОТ ПО ПРЕДПРОДАЖНОЙ ПОДГОТОВКЕ НОМЕРНЫХ АГРЕГАТОВ НА ОАО "АВТОДИЗЕЛЬ"

1 ДВИГАТЕЛЬ

Проверить:

комплектность:

- двигатель,
- паспорт,
- руководство по эксплуатации;
 угол опережения впрыскивания топлива;
 затяжку всех наружных соединений;
 наличие пломб:
- на топливном насосе высокого давления;

состояние наружных поверхностей на отсутствие коррозии, механических повреждений;

отсутствие неокрашенных поверхностей;

соответствие маркировки с паспортными данными (дата изготовления, номер, модель, соответствие заводской табличке);

наружную консервацию:

- наличие транспортных заглушек и пробок во всех отверстиях;
- смазку всех резьбовых отверстий;
- картер маховика должен быть закрыт парафинированной бумагой и обвязан шпагатом;
- наружная поверхность кожуха сцепления, посадочная поверхность переднего конца коленчатого вала (при отсутствии шкива в соответствии с комплектацией), а также генератор должны быть обернуты парафинированной бумагой и обвязаны шпагатом;

целостность транспортной подставы; правильность крепления на подставе.

2 КОРОБКА ПЕРЕДАЧ

Проверить:

комплектность:

- коробка передач,
- акт консервации в пакете;

маркировку:

- модель,
- порядковый номер,
- дата изготовления;

затяжку всех наружных соединений;

состояние наружных поверхностей на отсутствие коррозии, механических повреждений:

отсутствие неокрашенных поверхностей;

наружную консервацию;

- наличие транспортных заглушек и пробок во всех отверстиях;
- смазку всех резьбовых отверстий;
- картер сцепления должен быть закрыт парафинированной бумагой и обвязан шпагатом;
- смазку фланца вторичного вала и наличие на нем защитного кожуха.

целостность транспортной подставы; правильность крепления на подставе.

3 БЛОК ЦИЛИНДРОВ

Проверить:

комплектность:

- блок цилиндров,
- шпильки,
- пробки масляных каналов,
- водяные заглушки,
- штифты;

маркировку:

- год изготовления,
- номер;

отсутствие коррозии привалочных поверхностей, механических повреждений;

наружную консервацию;

целостность транспортной подставы;

надежность крепления блока на подставе.

Образец сервисного талона (двигатель):

соответствии с комплектацией), а также генератор должны быть обернуты парафинированной бумагой и обвязаны шлагатом; целостность транспортной подставы; правильность креплеми на подставе.

Предпродажная подготовка Отметка о предпродажной подготовке двигателя к продаже (обозначение двигателя) подготовлен в соответствии с перечнем работ по предпродажной подготовке Масто штампа (фамилия и должность ответственного за проведение предпродажной подготовке)

Подлись

Дата

Перечень работ по предпродажной подготовке двигателя

Проверить:

комплектность:

- двигатель,паслорт.
- руководство по эксплуатации;

угол опережения впрыска топлива; затяжку всех наружных соединений:

наличие пломб:

- на топливном насосе высокого давления;
- состояние наружных поверхностей на отсутствие коррозии, механических повреждений;
- отсутствие неокрашенных поверхностей;

соответствие маркировки с паспортными данными (дата изготовления, номер, модель, соответствие заводской табличке);

наружную консервацию:

- напичие транспортных заглушек и пробок во всех отверстиях;
- смазку всех резьбовых отверстий;
- картер маховика должен быть закрыт парафинированной бумагой и обеязан шпагатом;
 наружная поверхность комуха оцепления,
- посадочная поверхность переднего конца копенчатого вала (при отсутствии швива в соответствии с комплектацией), а также генератор

приложение д

Сведения о содержании драгоценных материалов:

Обозначение	Виды драгоценных материалов	Масса в изделии, г
Генератор	серебро	0,2894
Геператор	палладий	0,0035

Сведения о содержании цветных металлов и сплавов:

1. Алюминий и сплавы на алюминиевой основе

Обозначение		Масса, кг	
		1 шт.	на дви- гатель
Крышка блока 236-1002256-В4	1	2,1	2,1
Крышка шестерен 238Б-1002264-Б	1	8,4	8,4
Труба 238-1003290-Д	1	1,5	1,5
Труба 238-1003291-В	1	1,32	1,32
Поршень 7511.1004015-10	8	2,26	18,08
Поршень 238НБ-1004015-Б4	8	2,85	22,8
Патрубок подводящий 238Б-1013724	1	0,6	0,6
Патрубок подводящий 238Б-1013726	1	0,55	0,55
Патрубок отводящий 238Б-1013730	1	0,7	0,7
Патрубок отводящий 238Б-1013734	1	1,25	1,25
Корпус маслоочистителя 236-1028020-Б	1	1,5	1,5
Корпус ротора 236-1028185	1	0,46	0,46
Колпак ротора 236-1028242	1	0,68	0,68
Колпак маслоочистителя 236-1028250	1	0,88	0,88
Диск 840.1105402	2	0,03	0,06
Диск 840.1105412	18	0,03	0,5
Коллектор впускной 238БЕ-1115020	1	4,3	4,3
Коллектор впускной 238Б-1115021	1	4,3	4,3

Обозначение		Mad	са, кг
		1 шт.	на дви- гатель
Патрубок 7511.1115032	1	2,7	2,7
Патрубок 7511.1115128	1	3,2	3,2
Колесо компрессора 1000.1118.110	1	0,25	0,25
Корпус компрессора 1000.1118.130	1	1,8	1,8
Подшипник упорный 12.1118272	1	0,03	0,03
Крышка 12.1118280	1	0,95	0,95
Коробка термостата 7511.1306052	2	0,45	0,9
Патрубок 236-1306053	2	0,12	0,24
Корпус манжеты 239-1701478	1	0,15	0,15
Кронштейн натяжного устройства 236-3509306-A	1	0,52	0,52
Итого:			59,16
2. Медь и сплавы на меди	ной ос	нове	
Стакан форсунки 236-1003112-В	8	0,14	1,12
Полукольцо упорного подшипника 7511.1005183	4	0,16	0,64
Втулка распределительного вала 7511.1006026	1	0,37	0,37
Втулка 236-1006037-А	4	0,37	1,48
Втулка коромысла 236-1007118-В	16	0,03	0,48
Втулка толкателя 236-1007186	32	0,01	0,32
Втулка 238Б-1011034	4	0,02	0,08
Втулка 236-1011206	1	0,03	0,03
Труба отводящая 238Б-1011350-Б	1	0,02	0,02
Лист секции масляного насоса 201-1013344	16	0,05	0,8
Лист секции масляного радиатора 201-1013350	18	0,05	0,9
Лист секции масляного радиатора 201-1013362	2	0,05	0,1
Труба соединительная 7511.1115280	1	0,09	0,09
Подшипник 1000.1118.030	1	0,33	0,33

Обозначение		Масса, кг	
		1 шт.	на дви- гатель
Подшипник упорный 1000.1118.036	1	0,1	0,1
Тройник 7511.1306070-10	1	0,02	0,02
Обойма сальника 840.1307036-10	1	0,01	0,01
Обойма сальника 840.1307036-10	1	0,01	0,01
Корпус 840.10307040-20	1	0,07	0,07
Кольцо уплотнительное 850.1307043-10	1	0,04	0,04
Заглушка 236-1307078	1	0,01	0,01
Заглушка 313992	8	0,03	0,24
Заглушка 313934	14	0,02	0,28
Итого:			7,11

Примечание. Изменение массы цветных металлов в процессе эксплуатации силового агрегата не учитывается.

ДОПОЛНЕНИЕ К РУКОВОДСТВУ

ДВИГАТЕЛИ ЯМЗ - 238Б, ЯМЗ - 238Д, ЯМЗ - 238БВ, ЯМЗ - 238БЛ-1, ЯМЗ - 238БК, ЯМЗ - 238ДК, ЯМЗ - 238ДИ, ЯМЗ - 238НДЗ, ЯМЗ - 238НД4, ЯМЗ - 238НД5, ЯМЗ - 238НД6, ЯМЗ - 238НД7, ЯМЗ - 238НД8 И ИХ КОМПЛЕКТАЦИИ

Двигатели и силовые агрегаты ЯМЗ многоцелевого назначения, применяемость их приведена в таблице 1.

Применение двигателей и силовых агрегатов на новых моделях изделий обязательно должно быть согласовано изготовителем изделий с ОАО «Автодизель».

Таблица 1

таолица т				
Модель	К	омплектно	ость	Изделия, на которые
силового агрегата, комплектация	Модель сцепления	Модель коробки передач	Модель генератора	устанавливаются силовые агрегаты, двигатели
ЯМЗ-238Б-1	_	-	1322.3771 или Г273В2	ОАО «Калугапутьмаш», ОАО «Кировский машзавод 1 Мая», Путевые машины ВПР-02, ВПРС-02, -03
ЯМЗ-238Б-2	-	-	1702.3771	XK «АвтоКрАЗ» Автомобили, шасси (в запасные части)
ЯМЗ-238Б-5	-	I	1702.3771	XK «АвтоКрАЗ» Самосвал КрАЗ-6503 (в запасные части)
ЯМЗ-238Б-14	ЯМЗ-238Н механизм отбора мощности	ı	1702.3771	ОАО «Тихорецкий машзавод» Путевые машины АДМ-1,5, МПГ-6
ЯМЗ-238Б-19	_	_	1322.3771 или Г273В2	ОАО «ВЭКС» Воронежский экскаватор» Экскаватор ЭО-5225

Модель	К	Комплектность		Изделия, на которые
силового агрегата, комплектация	Модель сцепления	Модель коробки передач	Модель генератора	устанавливаются силовые агрегаты, двигатели
ЯМЗ-238Б-21	_	_	4012. 3771-86	ОАО «Промтрактор» Трактор-бульдозер Т20.01Я
ЯМЗ-238Б-22	_	_	1322.3771 или Г273В2	«МоАЗ» - филиал ОАО «БелАЗ» Трактор МоАЗ-49011
ЯМЗ-238Б-25	_	_	1322.3771 или Г273В2	OAO «МК»КРАНЭКС» Экскаватор ЕК-400, EO-5221
ЯМЗ-238Б-26	_	_	1322.3771 или Г273В2	«МоАЗ» - филиал ОАО «БелАЗ», самосвал МоАЗ-7505, автопогруз- чик МоАЗ-40484, авто- бульдозер МоАЗ-40489
ЯМЗ-238Б-28*	ЯМ3- 238Н	ЯМ3- 238ВУ- 42	1702.3771	ОАО «АЗ «Урал» Автомобили Урал с обеспечением бродо- ходимости 1,2 м (в запасные части)
ЯМЗ-238Б-31*	ЯМ3- 183-35	ЯМ3- 2381-58	4002. 3771B-80	ОАО «АЗ «Урал» Автомобили Урал -532301, -532302, -5324-21, -542301, -54236, -5323-21, -5423-21,-53236-21 с обеспечением бродо- ходимости 1,2 м
ЯМЗ-238Д-1	-	-	1322.3771 или Г273В2	ОАО «МАЗ», автомобили (в запасные части); ЗАО «Тюменьсудокомплект», дизельредукторные агрегаты
ЯМЗ-238Д-2	_	_	1702.3771	XK «АвтоКрАЗ» Автомобили, шасси (в запасные части)

Модель	К	Комплектность		Иолония на моловии
силового агрегата, комплектация	Модель сцепления	Модель коробки передач	Модель генератора	Изделия, на которые устанавливаются силовые агрегаты, двигатели
ЯМЗ-238Д-8	-	_	1702.3771	XK «АвтоКрАЗ» Автомобили, шасси (в запасные части)
ЯМЗ-238Д-18	-	_	4012. 3771-86	ОАО «Промтрактор» Кран-трубоукладчик ТГ-301Я
ЯМЗ-238Д-30	ЯМ3- 183-10	ЯМ3- 2381-31	1702.3771	ХК «АвтоКрАЗ»
ЯМЗ-238Д-33	ЯМ3- 183-15	ЯМ3- 2381-36	1702.3771	Автомобили
ЯМЗ-238БВ	ЯМЗ-238Н с картером сцепления и деталями выключения сцепл.	_	_	ОАО «Рубцовский машзавод» Гусеничные транспортеры-тягачи ГТ-ТМ, ГТ-ТМС, 521 М1
ЯМЗ-238БЛ-1	ЯМЗ-238Н без картера сцепления		_	ОАО «Муромтепловоз» Гусеничные транспор- теры-тягачи МТ-ЛБМ
ЯМЗ-238БК-2	-	_	4008. 3771-49	ПО «Гомсельмаш», зерно- уборочные комбайны КЗС-10К, 1218 «Полесье»
ЯМЗ-238БК-3	_	_	_	ПО «Гомсельмаш» Энергетическое средство УЭС-2-280А «Полесье»
ЯМЗ-238ДК-1	МО предохран муф	ительной	Г1000 ВК.11.1	ООО КЗ «Ростельмаш» Энергетическое средство «Дон-680М»
ямз-238ди	_	-	1322.3771 или Г273В2	Дизельные электроагрегаты мощностью 150 кВт
ям3-238НД3	-	-	Г287Е	ЗАО «ПТЗ» Тракторы К-700А, колесные буль- дозеры К-700А-БК (в запасные части)

Модель	К	омплектно	ОСТЬ	11
силового агрегата, комплектация	Модель сцепления	Модель коробки передач	Модель генератора	Изделия, на которые устанавливаются силовые агрегаты, двигатели
ЯМЗ-238НДЗ-1	_	-	5702. 3701-21	ЗАО «ПТЗ» Тракторы К-702МА, К-703МА и машины на их базе, погрузчик К-702МА-ПК6, дорожная машина К-702МВА-УДМ2, виброкаток К-703МА-ВК, бульдозер К-702МБА-01-БКУ, снегоочиститель К-703МА-ОС, лесопогрузчик К-703МА-ЛТ-195. ЗАО «ЧСДМ» Автогрейдер ДЗ-98В
ЯМЗ-238НД4	-	-	5702. 3701-21	ЗАО «ПТЗ» Тракторы К-744А, К-744Р-04, трелевочная машина К-703МА-МЛ-56
ЯМЗ-238НД4-1	_	-	4012. 3771-86	ОАО «Промтрактор» Тракторы Т15.01Я, Т221Я Кран-трубоукладчик ТГ-221Я, колесный погрузчик ЧЕТРА 60
ЯМЗ-238НД4-4	ЯМЗ-183	-	1322.3771 или Г273В2	ОАО «Костромской судомеханический завод» Катера КС-101Д, КС-104-024, КС-110
ЯМЗ-238НД5	-	-	5702. 3701-31	ЗАО «ПТЗ» Трактор К-744Р1 «Кировец»
ям3-238НД6	_	_	5702. 3701-31	ЗАО «ПТЗ» Фронтальный погрузчик К-740
ЯМЗ-238НД7	_	_	5702. 3701-31	ЗАО «ПТЗ» Тракторы К-744А, К-744-04 «Кировец»
ЯМЗ-238НД8	_	_	5702. 3701-31	ЗАО «ПТЗ» Трактор К-744Р1 «Кировец»

Примечание: * Силовые агрегаты ЯМЗ-238Б-28 и ЯМЗ-238Б-31 выполнены в герметичном исполнении, комплектуются фланцем крепления карданного вала с торцовыми шлицами по ИСО. После

преодоления водных преград необходимо проверить масло в картере двигателя и коробке передач на наличие воды и в случае обнаружения, масло заменить. Вскрыть нижний лючок на картере сцепления и при наличии воду слить, лючок закрыть и продолжить движение.

Двигатели с турбонаддувом ЯМЗ-238Б, ЯМЗ-238Д, их модификации и комплектации соответствуют экологическим нормативам Евро-0.

Тракторные и комбайновые двигатели с турбонаддувом ЯМЗ-238БК, ЯМЗ-238ДК, ЯМЗ-238НДЗ, ЯМЗ-238НД4, ЯМЗ-238НД5 и их комплектации, соответствующие ГОСТ 17.2.2-05-97, относятся к двигателям ЯМЗ, соответствующих экологическим нормативам Евро-0.

Двигатели с турбонаддувом ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД8 и их комплектации, соответствующие ГОСТ Р 41.96-2005 (Правила ЕЭК ООН № 96), относятся к двигателям ЯМЗ, соответствующих экологическим нормативам Евро-1.

Описание и особенности конструкции, эксплуатации и технического обслуживания двигателей ЯМЗ-238БК, ЯМЗ-238ДК, ЯМЗ-238ДИ и их комплектаций приводятся соответственно в отдельных дополнениях 238БК-3902150 РЭ, 238ДК-3902150 РЭ и 238ДИ-3902150 РЭ к настоящему руководству по эксплуатации, которые прикладываются к каждому двигателю при поставках потребителям.

ДВИГАТЕЛИ ЯМЗ-238Б, ЯМЗ-238Д

Двигатели ЯМЗ-238Б и ЯМЗ-238Д – восьмицилиндровые, четырехтактные, с газотурбинным наддувом.

Общее устройство этих двигателей аналогично и показано на поперечном (рис. 1) и продольном (рис. 2) разрезах.

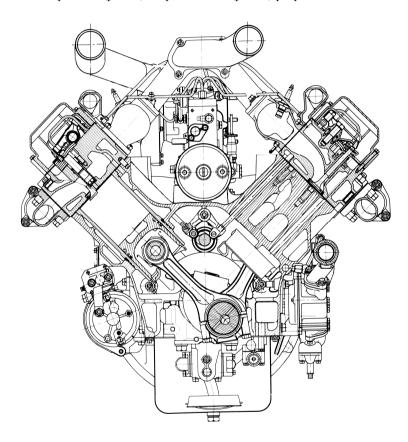


Рис. 1. Поперечный разрез двигателя

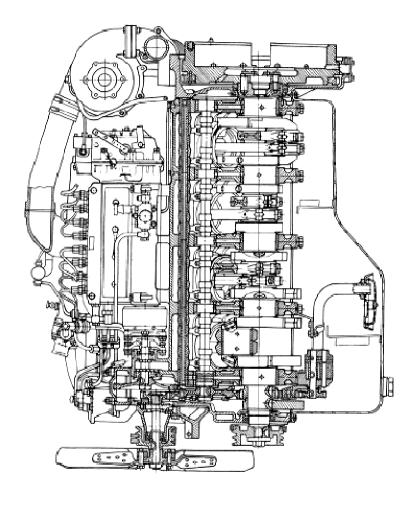


Рис. 2. Продольный разрез двигателя

Скоростные характеристики двигателей ЯМЗ-238Б и ЯМЗ-238Д приведены на рисунке 3.



Рис. 3. Скоростные характеристики двигателей ЯМЗ-238Б и ЯМЗ-238Д,

где: Nб - номинальная мощность брутто; Мк.б. - крутящий момент брутто; ge - удельный расход топлива; n - частота вращения коленчатого вала.

Технические характеристики двигателей ЯМЗ-238Б и ЯМЗ-238Д аналогичны соответственно техническим характеристикам двигателей ЯМЗ-238БЕ и ЯМЗ-238ДЕ.

КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Конструктивно двигатели ЯМЗ-238Б и ЯМЗ-238Д выполнены по аналогии двигателей ЯМЗ-238БЕ и ЯМЗ-238ДЕ, но имеют следующие отличия:

- 1. Отсутствие встроенного жидкостно-масляного теплообменника, при этом несколько изменены соответственно системы смазки и охлажления.
- 1.1. Система смазки двигателя смешанная, с «мокрым» картером. Схема системы смазки приведена на рисунке 4.

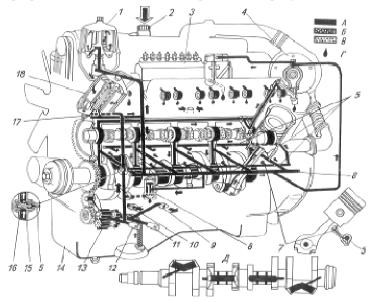
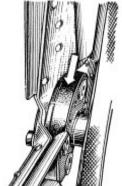



Рис. 4. Схема системы смазки:

А – высокое давление; Б – засасывание масла; В – смазка разбрызгиванием; Г – слив масла в масляный картер; Д – масляные каналы коленчатого вала; 1 – фильтр центробежной очистки масла; 2 – маслозаливная горловина; 3 – топливный насос высокого давления; 4 – турбокомпрессор; 5 – трубки подвода масла к форсункам охлаждения поршней; 6 – центральный масляный канал; 7 – форсунки охлаждения поршней маслом; 8 – дифференциальный клапан; 9 – к масляному радиатору; 10 – от масляного радиатора; 11 – предохранительный клапан радиаторной секции; 12 – редукционный клапан; 13 – масляный насос; 14 – масляный картер; 15 – блок цилиндров; 16 – клапан системы охлаждения поршней; 17 – перепускной клапан масляного радиатора; 18 – масляный фильтр

- 1.2. Система охлаждения жидкостная, циркуляционная, включающая в себя водяной насос, конструктивно выполненный, как и на двигателях ЯМЗ-238БЕ и ЯМЗ-238ДЕ, вентилятор, термостаты и радиатор, устанавливаемый на раме машины.
 - 2. Отсутствие фрикционного привода вентилятора, вместо

которого устанавливается привод вентилятора с упругой муфтой вентилятора.

В процессе эксплуатации необходимо контролировать состояние упругой муфты и не допускать работу двигателя с муфтой, у которой разрушен резиновый элемент или отмечается его отслоение (рис. 5).

Рис. 5. Упругая муфта вентилятора

- 3. Отсутствие системы охлаждения наддувочного воздуха, т.е. воздух поступает в цилиндры двигателя непосредственно из компрессора турбины.
 - 4. На двигатели ЯМЗ-238Б устанавливаются ТНВД:
 - 807.1111005-40.

На двигатели ЯМЗ-238Д устанавливаются ТНВД:

- 806.1111005-40.

Регулировочные параметры соответствуют параметрам двигателей ЯМЗ-238БЕ и ЯМЗ-238ДЕ.

5. Установочный угол опережения впрыскивания топлива составляет $15^{\circ +1^{\circ}}$.

ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ДВИГАТЕЛЕЙ

Эксплуатацию и техническое обслуживание двигателей ЯМЗ-238Б, ЯМЗ-238Д выполнять в соответствие с настоящим руководством по эксплуатации со сроком смены масла через 500 часов работы двигателя (см. разделы «Техническое обслуживание», «Эксплуатационные материалы» и т.д.).

Силовые агрегаты ЯМЗ-238Б и ЯМЗ-238Д могут комплектоваться как диафрагменным сцеплением модели ЯМЗ-183, так и двухдисковым сцеплением модели ЯМЗ-238Н, а также коробками передач типа ЯМЗ-238ВУ и ЯМЗ-2381.

СЦЕПЛЕНИЕ ЯМЗ-238Н

Сцепление модели ЯМЗ-238H – двухдисковое, сухое, фрикционного типа, с периферийным расположением цилиндрических пружин. Сцепление ЯМЗ-238H может выполняться в герметизированном варианте.

Кожух 16 (рис. 6) сцепления, штампованный из листовой стали, с нажимным диском 19 в сборе устанавливается на маховике 20 двигателя, а ведомые диски 21 – на шлицевой части первичного вала коробки передач. Передний и задний ведомые диски не взаимозаменяемы и устанавливаются в определенном положении, как показано на рисунке. Ведомые диски сцепления усилием двадцати зажимаются постоянным восьми цилиндрических нажимных пружин 17 между маховиком двигателя, средним и нажимным дисками. Под пружины со стороны нажимного диска подложены термоизолирующие прокладки 18. Нажимной и средний ведущий диски связаны с маховиком четырьмя шипами, находящимися на наружной поверхности дисков. В зажатом состоянии ведомые диски передают крутящий момент двигателя на первичный вал коробки передач.

Выключение сцепления производится муфтой 11. Муфта с подшипником, перемещаясь в сторону двигателя, отводит нажимной диск от ведомого диска, передавая усилие через четыре жестких оттяжных рычага 5. Рабочий ход муфты выключения сцепления, с учетом свободного хода, должен быть не менее 18,2 мм (размер «D»). Величина свободного хода регулируется механизмом выключения сцепления. Упорное кольцо оттяжных рычагов перемещается в сторону коробки передач на 27 мм за счет допустимого износа фрикционных накладок.

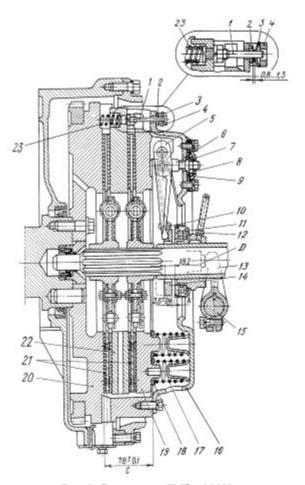


Рис.6. Сцепление ЯМЗ - 238Н:

1 — шток; 2 — кольцо; 3 — тарельчатая пружина; 4 — планка; 5 — оттяжной рычаг; 6 — вилка оттяжного рычага; 7 — регулировочная гайка; 8 — распорная пластина: 9 — стопорная пластина; 10 — петля пружины оттяжного рычага; 11 — муфта выключения сцепления с подшипником; 12 — шланг подачи смазки к муфте выключения сцепления; 13 — вилка выключения сцепления; 14 — упорное кольцо оттяжных рычагов; 15 — вал вилки выключения сцепления; 16 — кожух сцепления; 17 — нажимная пружина; 18 — термоизолирующая прокладка; 19 — нажимной диск; 20 — маховик; 21 — ведомые диски; 22 — средний ведущий диск; 23 — отжимная пружина; D — минимальный ход выжимной муфты.

Гарантированные зазоры между ведомыми дисками и поверхностями трения маховика, среднего ведущего и нажимного дисков при выключении сцепления по мере износа накладок обеспечиваются механизмом автоматической регулировки отхода среднего диска, который состоит из штоков 1, закрепленных в каждом из четырех шипов среднего ведущего диска, разрезных колец 2, для перемещения по штоку которых необходимо определенное усилие, упорных планок 4, которые крепятся с кожухом сцепления болтами к маховику, и тарельчатых пружин 3, установленных на штоке между кольцом 2 и планкой 4.

При выключении сцепления нажимной диск 19 отходит назад не менее чем на 2 мм, и освобождает задний ведомый диск 21. Средний ведущий диск 22 под действием пружины 23 так же отходит назад, до упора кольца 2 в планку 4 через тарельчатую пружину, на величину 1,2±0,1 мм, освобождая передний ведомый лиск.

По мере износа фрикционных накладок сцепления средний ведущий диск под действием нажимных пружин нажимного диска перемещается к маховику, кольца 2 при этом упираются в кожух сцепления, перемещаясь по штокам 1 и сохраняя размер между кольцами и тарельчатыми пружинами.

При установке сцепления с механизмом автоматической регулировки отхода среднего диска на маховик соблюдать следующий порядок:

- 1. Установить передний ведомый диск.
- 2. Установить средний ведущий диск со штоками.
- 3. Установить задний ведомый диск.
- 4. Установить нажимной диск с кожухом в сборе, закрепив его на маховике при помощи восьми коротких болтов.
- 5. Надеть разрезные кольца 2 на штоки 1 до упора в кожух сцепления.
- 6. Надеть четыре тарельчатые пружины выпуклой стороной к разрезным кольцам.
- 7. Установить четыре упорных планки и закрепить их с кожухом к маховику при помощи восьми длинных болтов.

После установки сцепления на маховик убедиться в том, что кольца на штоках стоят с упором в кожух, обеспечивая зазор 1,2±0,1 мм между кольцами и тарельчатыми пружинами при включенном сцеплении.

При износе накладок ведомых дисков торец муфты выключения сцепления упрется в торец крышки подшипника первичного вала коробки передач; в этом случае изношенные накладки ведомых дисков заменить новыми.

Отсутствие свободного хода муфты выключения сцепления приведет к выходу из строя нажимного подшипника и усиленной пробуксовке ведомых дисков. Свободный ход муфты выключения сцепления (размер «А») регулировать изменением длины тяги механизма выключения или длины штока цилиндра усилителя в зависимости от конструкции механизма выключения сцепления в соответствии с указанием инструкции по эксплуатации транспортных средств.

ВНИМАНИЕ! РЕГУЛИРОВКА СВОБОДНОГО ХОДА МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ РЕГУЛИРОВОЧНЫМИ ГАЙКАМИ ОТТЯЖНЫХ РЫЧАГОВ КАТЕГОРИЧЕСКИ ЗАПРЕЩАЕТСЯ.

После регулировок проверить сцепление на отсутствие «ведения»; эту проверку проводить на работающем двигателе при включенной первой передаче и выключенном сцеплении.

РЕГУЛИРОВКА ПОЛОЖЕНИЯ УПОРНОГО КОЛЬЦА ОТТЯЖНЫХ РЫЧАГОВ

При сборке нажимного диска с кожухом в сборе отрегулировать положение упорного кольца. Эту регулировку производить в приспособлении, имеющем установочный размер 27±0,1 мм (рис. 7) регулировочными гайками 6 оттяжных рычагов при фиксированном положении кожуха и нажимного диска. Регулировкой обеспечить размер «В», равный 64±0,1 мм, при этом упорные поверхности всех четырех оттяжных рычагов 5 должны одновременно касаться упорного кольца 4. Перекос упорного кольца приведет к неравномерному отходу нажимного диска при выключении сцепления или ненормальной его работе.

После регулировки положения упорного кольца регулировочными гайками 6 установить стопорные 7 и опорные 8 пластины регулировочных гаек. Завернуть все восемь болтов крепления стопорных и опорных пластин, установив пружинные шайбы под головки болтов.



Рис. 7. Приспособление для сборки нажимного диска с кожухом в сборе:

1 — подставка; 2 — направляющий штифт; 3 — болт крепления кожуха; 4 — упорное кольцо оттяжных рычагов; 5 — оттяжной рычаг; 6 — регулировочная гайка; 7 — стопорная пластина; 8 — опорная пластина; 9 — нажимной диск

В случае использования нажимного диска с кожухом в комплекте с ведомыми дисками после ремонта, на которых установлены фрикционные накладки толщиной 4,15 мм, при регулировке положения упорного кольца размер «В» установить равным 67±0,1 мм.

ЭКСПЛУАТАЦИЯ СЦЕПЛЕНИЯ

С целью предотвращения повышенного износа деталей сцепления и возможных его отказов при эксплуатации автомобилей обеспечить следующее:

- 1. Трогание с места осуществлять с минимальной возможной частотой вращения коленчатого вала двигателя; при этом в коробке передач должна быть включена 1-я или 2-я передача в зависимости от нагрузки автомобиля и дорожных условий.
- 2. Регулирование скорости автомобиля с помощью пробуксовки сцепления не допускается.
- 3. После трогания автомобиля с места не держать ногу на педали сцепления.
- 4. Не допускать эксплуатацию автомобиля с неисправным и не отрегулированным приводом выключения сцепления. Регулировку привода выключения сцепления на автомобиле производить в соответствии с указаниями руководства по эксплуатации автомобиля.

5. При эксплуатации автомобилей и других транспортных средств в тяжелых дорожных условиях, особенно после многократных троганий с места при преодолении препятствий движению, проверять наличие свободного хода муфты выключения сцепления.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ СЦЕПЛЕНИЯ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Неисправность

Способ устранения

СПЕПЛЕНИЕ ПРОБУКСОВЫВАЕТ

Отсутствует свободный ход муфты выключения сцепления

Износ фрикционных накладок ведомого диска

Сожжены или пропитаны маслом фрикционные накладки ведомого лиска

Отрегулировать свободный ход муфты выключения сцепления

Заменить фрикционные накладки или ведомые диски в сборе и отрегулировать сцепление

Заменить фрикционные накладки или ведомые диски в сборе и отрегулировать сцепление

НЕПОЛНОЕ ВЫКЛЮЧЕНИЕ СЦЕПЛЕНИЯ

Механизм выключения сцепления не обеспечивает полного хода муфты выключения

Коробление нажимного диска

Большой зазор между упорным кольцом оттяжных рычагов и нажимным подшипником

Проверить регулировку и установку педали и гидро- или пневмоусилителей механизма выключения

Заменить нажимной диск с кожухом в сборе

Отрегулировать свободный ход муфты выключения сцепления

ЗАТРУДНЕННОЕ ПЕРЕКЛЮЧЕНИЕ ПЕРЕДАЧ

Неполное выключение сцепления (сцепление ведет)

Отрегулировать свободный ход педали сцепления или, если дефект является следствием неисправности детали сцепления, заменить поврежденные детали

ДВИГАТЕЛЬ ЯМЗ-238БВ

Двигатель ЯМЗ-238БВ является модификацией двигателя ЯМЗ-238Б, конструктивно отличается незначительно и применяется на изделиях ОАО «Рубцовский машзавод».

Ниже приведены технические параметры и некоторые особенности конструкции двигателя.

Параметры двигателя	ЯМЗ-238БВ
Номинальная мощность кВт (л.с.)	228 (310)
Номинальная частота вращения, мин-1	2000^{+50}_{-20}
Максимальный крутящий момент при частоте вращения $1200-1400$ мин ⁻¹ , $H \cdot M$ (кгс·м)	1207 (123)
Частота вращения холостого хода, мин ⁻¹	
- максимальная, не более	2275
- минимальная	600±50
Угол опережения впрыскивания топлива, град.	15° +1°
Сцепление (с картером сцепления и деталями выключения сцепления)	ЯМЗ-238Н

Двигатель ЯМЗ-238БВ комплектуется глубоким масляным картером с обечайкой, двухручьевым шкивом коленчатого вала, приводом вентилятора без шкива и упругой муфты, кронштейном натяжного устройства.

Вентилятором, генератором, деталями его крепления, а также ремнями привода генератора двигатель не комплектуется.

На двигатель ЯМЗ-238БВ устанавливается топливный насос высокого давления модели 807.1111005-40.

Эксплуатационные материалы применять в соответствии с химмотологической картой 238БВ.1000400 ДХК.

ДВИГАТЕЛЬ ЯМЗ-238БЛ-1

Двигатель ЯМЗ-238БЛ-1 является модификацией двигателя ЯМЗ-238Б, конструктивно отличается незначительно и применяется на изделиях ОАО «Муромтепловоз».

Ниже приведены некоторые технические параметры и особенности конструкции двигателя.

Параметры двигателя	ЯМЗ-238БЛ-1
Номинальная мощность кВт (л.с.)	228 (310)
Номинальная частота вращения, мин ⁻¹	2100^{+50}_{-20}
Максимальный крутящий момент при частоте вращения 1200-1400 мин ⁻¹ , Н·м(кгс·м)	1177 (120)
Частота вращения холостого хода, мин ⁻¹	
- максимальная, не более	2275
- минимальная	600±50
Угол опережения впрыскивания топлива, град.	15° +1°
Сцепление (без картера сцепления)	ЯМЗ-238Н

Двигатель ЯМЗ-238БЛ-1 комплектуется глубоким масляным картером с обечайкой, приводом вентилятора без шкива и упругой муфты.

Вентилятором, генератором, деталями его крепления, а также ремнями привода генератора, шкивом коленчатого вала двигатель не комплектуется.

ОБСЛУЖИВАНИЕ ТОПЛИВНОГО НАСОСА ВЫСОКОГО ДАВЛЕНИЯ

На двигатель ЯМЗ-238БЛ-1 устанавливается топливный насос высокого давления модели 801.1111005-50.

- 1. Проверку и регулировку топливного насоса высокого давления двигателя ЯМЗ-238БЛ-1 проводить на дизельном топливе.
- 2. При регулировке величины цикловой подачи и проверке работы регулятора, давление топлива в магистрали на входе в насос $0.075\pm0.02~\text{M}\Pi a~(0.75\pm0.2~\text{krc/cm}^2)$.
- 3. Подача топлива каждой секцией насоса при проверке с рабочими форсунками, отрегулированными на давление начала впрыскивания $20,6^{+0,8}$ МПа $(210^{+8}$ кгс/см²) должна быть в пределах 132-142 мм³/цикл при 1030 ± 10 мин³, при неравномерности 5%.

- 4. Проверить наличие запаса хода рейки.
- 5. Проверить наличие полного выключения подачи.
- 6. Отрегулировать подачу топлива при 650±10 об/мин кулачкового вала насоса и при упоре рычага управления в болт ограничения максимальной частоты вращения. Подача топлива должна превышать на 4 9 мм³/цикл подачу, отрегулированную по п.3. Регулировку производить гайками корректора 12 (рис. 22). При ввертывании гайки подача уменьшается, при вывертывании увеличивается.
- 7. На топливном насосе установлен корректор подачи топлива по наддуву. Конструкция его (рис. 23) и регулировочные параметры такие же, как и у корректора на двигателе ЯМЗ-238БЕ.

Кроме того, необходимо контролировать подачу топлива при давлении воздуха 35 ± 1 кПа $(0,35\pm0,01$ кгс/см²), которая должна составлять 126-132 мм³/цикл. Регулировку производить натягом пружины 11 корректора по наддуву (рис. 23). При этом подача топлива каждой секцией насоса при давлении воздуха 0,05+0,02МПа (0,5+0,2) кгс/см² должна составлять 142-151 мм³/пикл.

ДВИГАТЕЛИ ЯМЗ-238НДЗ, ЯМЗ-238НД4, ЯМЗ-238НД5

Двигатели ЯМЗ-238НДЗ, ЯМЗ-238НД4 и ЯМЗ-238НД5 — восьмицилиндровые, четырехтактные, с газотурбинным наддувом, масляным охлаждением поршней, конструктивно выполнены на базе двигателя ЯМЗ-238Б и предназначены для установки на изделия ЗАО «Петербургский тракторный завод» г. Санкт-Петербург, ЗАО «ЧСДМ» г. Челябинск, ОАО «Промтрактор» г. Чебоксары, ОАО «Костромской судомеханический завод г. Кострома (см. применяемость в таблице 1).

Двигатели ЯМЗ-238НД4-1, ЯМЗ-238НД4-4 комплектуются жидкостно-масляным теплообменником охлаждения масла.

Двигатель ЯМЗ-238НД5 комплектуется фрикционным приводом вентилятора с управлением вентилятором электромагнитным включателем и генератором модели 5702.3701-31.

Двигатель ЯМЗ-238НДЗ комплектуется генератором модели Г287Е, двигатели ЯМЗ-238НДЗ-1, ЯМЗ-238НД4 — генератором модели 5702.3701-21.

Двигатели рассчитаны на эксплуатацию при температуре окружающего воздуха от минус 45°C до плюс 40°C, относительной влажности до 98% при температуре плюс 25°C.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Основные параметры и характеристики	ЯМ3- 238НД3	ЯМЗ- 238НД4	ЯМЗ- 238НД5
Номинальная мощность, кВт (л.с.)	173 (235)	184 (250)	220 (300)
Номинальная частота вращения, мин ⁻¹	1700 ⁺⁵⁰ ₋₂₀ 1900 ⁺⁵⁰ ₋₂₀		+50 -20
Максимальный крутящий момент, Н·м (кгс·м)	1108	(113)	1280 (130)
Частота вращения, соответствующая максимальному крутящему моменту, мин ⁻¹	1100-1400		
Максимальная частота вращения холостого хода, мин ⁻¹	1950 2150		50
Минимальная частота вра- щения холостого хода, мин ⁻¹	650±50		
Удельный расход топлива при номинальной мощности, г/кВтч (г/л.с.ч)	218 (160)	220 ((162)
Угол опережения впрыскивания топлива, градусах до ВМТ	15 ⁺¹		
Масса двигателя в состоянии поставки (без сцепления), кг	1135		

Скоростные характеристики двигателей ЯМЗ-238НДЗ, ЯМЗ-238НД4 и ЯМЗ-238НД5 приведены на рисунке 7а.

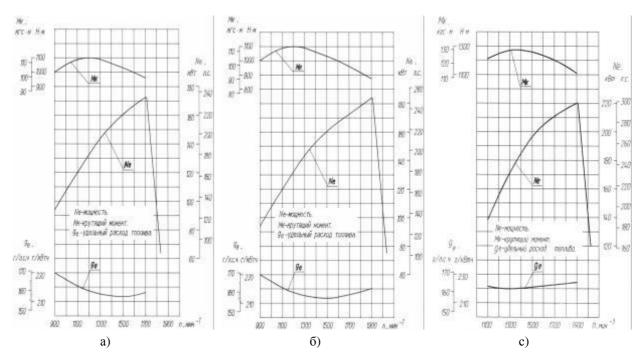


Рис. 7а. Скоростная характеристика двигателей: а) ЯМЗ-238НДЗ, б) ЯМЗ-238НД4, в) ЯМЗ-238НД5

ТОПЛИВНАЯ АППАРАТУРА

Двигатели ЯМЗ-238НДЗ, ЯМЗ-238НД4 и ЯМЗ-238НД5 комплектуются:

- топливными насосами высокого давления моделей 805.1111007-30, 805.1111007-40 и 805.1111007-50 соответственно;
- форсунками моделей 26.1112010-13 (для ЯМЗ-238НД6, ЯМЗ-238НД7) и 261.1112010-13 (для ЯМЗ-238НД8).

Все указанные форсунки регулируются на давление начала впрыскивания топлива $22,6^{+0.8}$ МПа $(230^{+8}$ кгс/см²).

ΓΕΗΕΡΑΤΟΡ Γ287Ε

Генератор Г287Е (рис. 7б) - трехфазный, синхронный, с электромагнитным возбуждением, со встроенным кремниевым выпрямителем, служит для питания потребителей электроэнергии трактора и для подзарядки аккумуляторных батарей. Генератор работает в комплекте с регулятором напряжения РР-385Б.

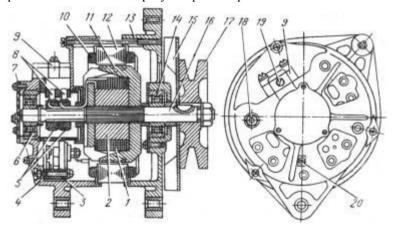


Рис. 7б. Генератор Г287Е:

1 — обмотка возбуждения; 2 — втулка ротора; 3 — выпрямительный блок БПВ-100; 4 — крышка со стороны контактных колец; 5 — контактные кольца; 6, 14 — шарикоподшипники; 7 — крышка шарикоподшипника; 8 — щетки; 9 — щеткодержатель; 10 — обмотка статора; 11 — полюсы ротора; 12 — пакет железа статора; 13 — крышка со стороны привода; 15 — вентилятор; 16 — вал ротора; 17 — шкив; 18 — вывод « + »; 19 — вывод «Ш»; 20 — винт массы

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА

Номинальное напряжение, В	
Начальная частота вращения при температуре	
окружающей среды и генератора 25±10°С и	
напряжении 14 В, об/мин, не более	
без нагрузки	950
 при токе нагрузки 60 A 	2100
Ток возбуждения, А	4,0±0,1
Величина давления щеточных пружин	
(при сжатии до 17,5 мм), Н (кгс)	2,20±0,30
	(220 ± 30)
Масса генератора без шкива, кг	10,0

Генератор установлен на специальном кронштейне и приводится от шкива вентилятора клиновым ремнем. Натяжение ремня привода генератора осуществляется перемещением генератора вокруг оси его крепления.

ОБСЛУЖИВАНИЕ ГЕНЕРАТОРА Г287Е

Во время эксплуатации предохранять агрегаты электрооборудования от попадания на них масла и топлива, а также воды при мойке двигателя (см. раздел «Техническое обслуживание электооборудования»).

В процессе эксплуатации при каждом ТО-2 проверять крепление проводов к клеммам генератора и регулятора напряжения, состояние выводов « + » и «Ш», натяжение ремня привода генератора, крепление генератора к двигателю и шкива на валу генератора и очищать генератор от пыли и грязи.

После 5000 моточасов работы производить техническое обслуживание генератора в указанном ниже объеме:

- 1. Снять генератор с двигателя, очистить его от пыли и грязи.
- 2. Проверить высоту щеток и давление щеточных пружин. Высота щеток должна быть не менее 7 мм от пружины до основания щетки, а давление пружин соответствовать данным технической характеристики генератора. Изношенные щетки заменить новыми. При замене щеток зачистить контактные кольца мелкой стеклянной шкуркой, а при необходимости проточить их, если износ превышает 0,5 мм по диаметру. Минимально допустимый диаметр контактных колец 29,3 мм.

Порядок разборки генератора для проточки контактных колец изложен ниже.

- 3. Внимательно осмотреть шарикоподшипники; при наличии дефекта их заменить.
 - 4. Собрать генератор.
 - 5. Проверить электрические характеристики.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРА

- 1. Отвернуть винты крепления щеткодержателя и снять его.
- 2. Отвернуть стяжные болты и снять крышку со стороны контактных колец вместе со статором.
- 3. Отвернуть гайки крепления фазных выводов от выпрямительного блока и отделить статор от крышки.
- 4. Отвернуть винты крепления выпрямительного блока и отделить блок от крышки.
- 5. Отвернуть гайку крепления шкива, снять шкив и вентилятор.
- 6. Извлечь шпонку и снять упорную втулку.
- 7. Снять с вала крышку со стороны привода.

Сборку генератора производить в порядке, обратном разборке. Момент затяжки гайки шкива 60-80 H·м (6-8 кгс·м).

ПРОВЕРКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГЕНЕРАТОРА

Для проверки подключить вольтметр класса не ниже 1,5 по схеме, приведенной на рисунке 7в. Пустить двигатель и установить среднюю частоту вращения (около 2000 об/мин вала ротора генератора). Через 10 мин работы подключить нагрузку; регулируемое напряжение должно быть 13,5-14,5 В.

Упрощенная проверка проводится по показаниям амперметра. Если стрелка при номинальной частоте вращения коленчатого вала и включенных потребителях стоит на нуле или указывает незначительный разряд - проверить натяжение ремня. Чтобы убедиться в исправности системы электрооборудования, остановить двигатель, не отключая потребителей; амперметр покажет разряд. Вторично пустить двигатель; если при средних оборотах амперметр покажет заряд - система исправна.

Контрольную проверку технического состояния генератора производить на стенде с приводом, позволяющим изменять скорость вращения ротора генератора от 0 до 5000 об/мин. Электрическая схема генераторной установки для проверки электрических характеристик приведена на рис. 10.

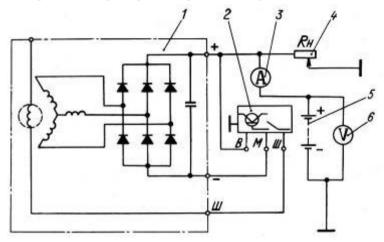


Рис. 7в. Схема генераторной установки для проверки электрических характеристик:

1 — генератор; 2 — регулятор напряжения; 3 — амперметр; 4 — сопротивление нагрузки; 5 — аккумуляторная батарея; 6 — вольтметр

Если генератор исправен, то все параметры соответствуют указанным в разделе «Техническая характеристика генератора».

ГЕНЕРАТОР 5702.3701

На двигателях установлен генератор 5702.3701 с клиноременным приводом, представляющий трехфазную синхронную машину переменного тока с электромагнитным возбуждением (генератор) со встроенным блоком выпрямителей БПВ7-100-02. Генератор работает совместно с регулятором напряжения 2302.3702, установленном на объекте.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ГЕНЕРАТОРА

Номинальное напряжение, В	28
Номинальный выпрямительный ток, А	75
Скорость вращения ротора при температуре	
окружающей среды 25±10° С и напряжении 28 В	
(при самовозбуждении), мин ⁻¹ , не более:	
- без нагрузки	1250
- при нагрузке 60А	2350
Ток возбуждения, А	$3,2\pm0,2$
Давление щеточных пружин, кгс	$0,22\pm0,03$
Масса (без шкива), кг	9

ОБСЛУЖИВАНИЕ ГЕНЕРАТОРА 5702.3701

Для обеспечения надежной и безотказной работы генератора в условиях эксплуатации, необходимо содержать генератор в чистоте и выполнять следующие правила технического обслуживания.

При ежедневном обслуживании:

Проверить работу генератора по показанию указателя тока после пуска двигателя, когда батарея несколько разряжена стартером. При этом, на средней частоте вращения двигателя, генератор должен давать некоторый зарядный ток, величина которого спадает по мере восстановления заряда батареи. При исправной и полностью заряженной батарее, малый ток не свидетельствует о неисправности генератора.

При техническом обслуживании ТО-2.

- 1. Проверить затяжку, и при необходимости, подтянуть болты крепления генератора.
- 2. Проверить натяжение приводного ремня, при необходимости, отрегулировать.
- 3. Проверить затяжку и чистоту всех мест присоединения проводов к генератору, регулятору и аккумуляторной батарее. При необходимости очистить места присоединения и подтяните контактные гайки и винты.

После наработки 4000 моточасов дополнительно выполнить следующее:

- 1. Снять генератор.
- 2. Продуть генератор сжатым воздухом для удаления пыли.

- 3. Проверить состояние щеточного узла, для чего отвернуть два винта крепления щеткодержателя к крышке и вынуть щеткодержатель.
- 4. Проверить, свободно ли перемещаются щетки в щеткодержателе. При затрудненном перемещении щетки прочистить. Высота щеток должна быть не менее 8 мм.
- 5. Осмотреть контактные кольца. Если износ контактных колец превышает 0,5 мм по диаметру, генератор надо разобрать и кольца проточить. Допустимый диаметр после проточки контактных колец 28,5.0.28 мм.
- 6. Заменить шарикоподшипники в случае заедания или сильного шума.
- 7. Проверить, и при необходимости подтянуть стяжные шпильки и гайку крепления шкива генератора.
- 8. Собрать генератор, проверить его электрические параметры.

РАЗБОРКА И СБОРКА ГЕНЕРАТОРА

- 1. Отвернуть два винта крепления щеткодержателя к крышке и снять его.
- 2. Отвернуть два винта крепления колодки к крышке и снять ее.
- 3. Снять крышку шарикоподшипника.
- 4. Отвернуть стяжные шпильки.
- Снять крышку со стороны контактных колец вместе со статором. При необходимости крышку снять съемником.
- 6. Отсоединить фазные обмотки статора и выводы колодки от выводов на выпрямительном блоке в крышке со стороны контактных колец и снять статор.
- 7. Отвернуть гайку крепления шкива и, при помощи съемника, снять шкив.
- 8. Снимите вентилятор, дистанционную втулку и выньте шпонку.
- 9. Снять крышку со стороны привода с вала ротора.
- Отвернуть четыре винта держателя шарикоподшипника и выпрессовать шарикоподшипник из гнезда крышки со стороны привода.
- 11. Сборку генератора производить в обратном порядке. Затяжку гайки шкива производить моментом 23,4...35,3 Н·м (2,3-3,5 кгс·м).

КОНТРОЛЬНАЯ ПРОВЕРКА ГЕНЕРАТОРА

Контрольная проверка генератора 5702.3701 представляет собой проверку частоты вращения ротора генератора без нагрузки и с нагрузкой. Если генератор исправен, то его параметры должны соответствовать указанным в разделе "Техническая характеристика генератора".

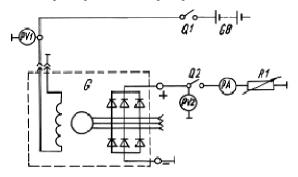


Рис. 7г. Схема соединений для проверки характеристик генератора:

G - генератор; Q1 и Q2 - выключатели; PY1 и PY2 вольтметры; R1 - реостат; PA - амперметр; GB-аккумуляторная батарея.

Проверка производится на специальном стенде с приводом, позволяющим изменять частоту вращения ротора генератора от 0 до 3000 мин^{-1} по схеме (рис. 7г).

Питание обмотки возбуждения осуществляется от постороннего источника постоянного тока напряжением 28 В. При этом выключатель Q1 замыкается, выключатель Q2 разомкнут. Выключатель Q2 замыкается при проверке с нагрузкой.

ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Эксплуатацию и техническое обслуживание двигателей ЯМЗ-238НДЗ, ЯМЗ-238НД4 и ЯМЗ-238НД5 выполнять в соответствие с настоящим руководством по эксплуатации применительно двигателей ЯМЗ-238Б со сроком смены масла через 500 часов (см. разделы «Техническое обслуживание», «Эксплуатационные материалы» и т.д.).

ДВИГАТЕЛИ ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД8

Двигатели ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД8 — восьмицилиндровые, четырехтактные, с газотурбинным наддувом, промежуточным охлаждением наддувочного воздуха, масляным охлаждением поршней, встроенным в двигатель жидкостномасляным теплообменником охлаждения масла, конструктивно выполнены на базе двигателя ЯМЗ-238ДЕ и предназначены для установки на изделия ЗАО «Петербургский тракторный завод» г. Санкт-Петербург, (см. применяемость в таблице 1).

Все модели двигателей комплектуются фрикционным приводом вентилятора с управлением вентилятором электромагнитным включателем и генератором модели 5702.3701-31.

Двигатели рассчитаны на эксплуатацию при температуре окружающего воздуха от минус 60°C до плюс 50°C, относительной влажности до 98% при температуре плюс 25°C.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

Основные параметры и характеристики	ЯМЗ- 238НД6	ЯМЗ- 238НД7	ЯМЗ- 238НД8
Номинальная мощность, кВт (л.с.)	173 (235)	184 (250)	220,6 (300)
Номинальная частота вращения, мин ⁻¹	1700_{-20}^{+50} 1900_{-20}^{+50}) ⁺⁵⁰ ₋₂₀
Эксплуатационная мощность, кВт (л.с.)	163 (222)	174 (235)	209,5 (285)
Максимальный крутящий момент, брутто, Н·м (кгс·м)	1108 (113)		1280 (130)
Частота вращения, соответствующая максимальному крутящему моменту, мин ⁻¹	1100-1400		
Максимальная частота вращения холостого хода, мин ⁻¹	1950 2150		150
Минимальная частота вращения холостого хода, мин -1	600±50		

Основные параметры и характеристики	ЯМЗ- 238НД6	ЯМЗ- 238НД7	ЯМЗ- 238НД8
Удельный расход топлива при номинальной мощности, г/кВтч (г/л.с.ч)		215 (159)	
Угол опережения впрыскивания топлива, градусах до ВМТ	15 ⁺¹		
Масса двигателя в состоянии поставки (без сцепления), кг			

Скоростные характеристики двигателей ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД8 приведены на рисунке 7д.

ТОПЛИВНАЯ АППАРАТУРА

Двигатели ЯМЗ-238НД6, ЯМЗ-238НД7 и ЯМЗ-238НД8 комплектуются:

- топливными насосами высокого давления моделей 805.1111007-60, 805.1111007-70 и 805.1111007-80 соответственно;
- форсунками моделей 26.1112010-13 (для ЯМЗ-238НД6, ЯМЗ-238НД7) и 261.1112010-13 (для ЯМЗ-238НД8).

Все указанные форсунки регулируются на давление начала впрыскивания топлива $22,6^{+0.8}$ МПа $(230^{+8}$ кгс/см²).

ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Эксплуатацию и техническое обслуживание двигателей ЯМЗ-238НД6, ЯМЗ-238НД7 и ЯМЗ-238НД8 выполнять в соответствие с настоящим руководством по эксплуатации применительно двигателей ЯМЗ-238ДЕ со сроком смены масла через 500 часов (см. разделы «Техническое обслуживание», «Эксплуатационные материалы» и т.д.).

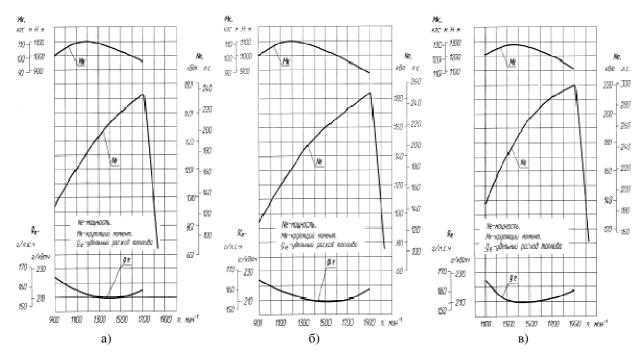


Рис. 7д. Скоростная характеристика двигателей: а) ЯМЗ-238НД6, б) ЯМЗ-238НД7, с) ЯМЗ-238НД8

ГАРАНТИИ ЗАВОДА

Гарантийные сроки эксплуатации и наработки двигателей ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БВ, ЯМЗ-238БЛ-1, ЯМЗ-238НДЗ, ЯМЗ-238НД4, ЯМЗ-238НД5, ЯМЗ-238НД6, ЯМЗ-238НД7, ЯМЗ-238НД8 и их комплектаций в соответствие с гарантийными сроком и наработкой изделия, на которые они установлены.

Порядок предъявления рекламаций в соответствие с разделом «Гарантии завода и порядок предъявления рекламаций» настоящего руководства по эксплуатации 238ДЕ-3902150 РЭ.

ПРИВОД ВЕНТИЛЯТОРА С ЭЛЕКТРО-МАГНИТНЫМ КЛАПАНОМ КЭМ 32-23М1

С сентября 2004 года ОАО «Автодизель» комплектует двигатели ЯМЗ, соответствующие требованиям Евро-1 и Евро-2, приводами вентилятора, оборудованными электромагнитным включателем.

ВКЛЮЧАТЕЛЬ ЭЛЕКТРОМАГНИТНЫЙ

Особенности работы электромагнитного включателя (рис. 8-11) заключаются в том, что от термореле, расположенного на правом водяном коллекторе, поступает электрический сигнал к электромагнитному клапану, который устанавливается непосредственно на корпусе привода вентилятора и управляет поступлением масла в муфту привода. Соединение клапана с корпусом уплотняется паронитовой прокладкой.

С августа 2007 года подача масла к электромагнитному клапану осуществляется от корпуса масляного фильтра через трубку подвода масла 5 (рис. 8).

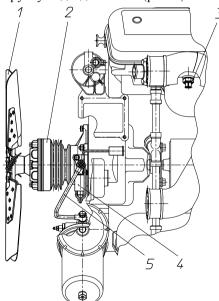


Рис. 8. Расположение деталей привода вентилятора с электромагнитным клапаном на двигателе:

1 — вентилятор; 2 — муфта привода; 3 — термореле; 4 — электромагнитный клапан; 5 — трубка подвода масла.

Конструкция электромагнитного клапана (рис. 9) обеспечивает необходимое давление масла при включении вентилятора,

а также предусматривает регламентируемую подачу масла в выключенном состоянии через специальный самоочищающийся жиклер для обеспечения смазки подшипников привода. При отсутствии напряжения на контактах штекерной колодки электромагнитный клапан находится в закрытом положении. При подаче напряжения 24 В клапан открывается.

С целью повышения эффективности работы по исключению засорения в корпусе клапана размещен постоянный магнит для улавливания металлических частиц.

В процессе эксплуатации техническое обслуживание электромагнитного клапана не требуется, при необходимости допускается очистка магнита от металлических частиц.

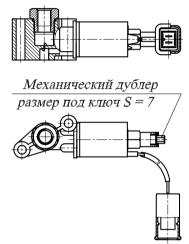


Рис. 9. Клапан электромагнитный КЭМ 32-23М1

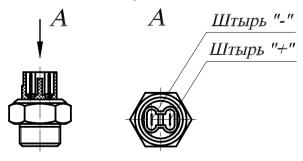


Рис. 10. Термореле

Управление работой электромагнитного клапана осуществляется трехпозиционным переключателем, расположенным в кабине водителя.

При включении вентилятора на пульте водителя загорается контрольная лампа (см. схему рис. 11).

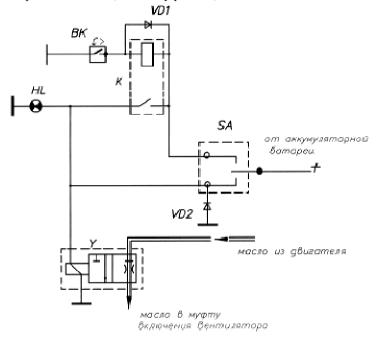


Рис. 11. Схема включения муфты вентилятора электрическая, принципиальная

Схема включения муфты вентилятора электрическая, принципиальная (рис. 11) включает следующие элементы:

Обозначение элемента	Наименование	Кол-во
ВК	Термореле 661.3710-01	1
Y	Электромагнитный клапан КЭМ 32-23М1*	1
HL	Контрольная лампа	1
SA	Переключатель 51.3709**	1
VD1, VD2	Диод Д247А**	2
K	Реле 11.3747**	1

- * Привод вентилятора комплектуется электромагнитным клапаном КЭМ 32-23М1 при напряжении бортовой сети 24 В.
- ** Схема электрическая принципиальная, поэтому она может видоизменяться, в том числе могут быть применены другие комплектующие, которые выбираются предприятиями потребителями силовых агрегатов.

Функции элементов схемы электрической принципиальной:

- 1. Переключатель SA находится в кабине.
- 2. Переключатель SA имеет три положения:
 - «Выключено» вентилятор выключен независимо от температуры двигателя.
 - «Включено» вентилятор включен независимо от температуры двигателя.
 - «Автомат» вентилятор включается от термореле в зависимости от температуры двигателя.
- 3. HL лампа контрольная, включается при работе вентилятора.

При выходе из строя электрической части системы управления вентилятором (обрывы обмотки электромагнита, проводов и т.п.) конструкцией электромагнитного клапана КЭМ 32-23М1 предусмотрено принудительное включение вентилятора с помощью механического дублера. Открытие клапана производится закручиванием винта дублера до упора.

При изменении режимов работы вентилятора трехпозиционным переключателем, расположенным в кабине водителя, винт механического дублера должен быть вывернут до упора.

ВНИМАНИЕ! ПРИ РАБОТЕ ВЕНТИЛЯТОРА В АВТОМАТИЧЕСКОМ РЕЖИМЕ (ВЕНТИЛЯТОР ВКЛЮЧАЕТСЯ ОТ ЭЛЕКТРИЧЕСКОГО СИГНАЛА ТЕРМОРЕЛЕ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРНОГО РЕЖИМА) ВИНТ РУЧНОГО ДУБЛЕРА ДОЛЖЕН БЫТЬ ВЫВЕРНУТ ДО УПОРА.

РАЗБОРКА И СБОРКА ПРИВОДА ВЕНТИЛЯТОРА

ПОРЯДОК СНЯТИЯ И РАЗБОРКИ ПРИВОДА ВЕНТИЛЯТОРА

- 1. Отвернуть болты крепления и снять крыльчатку вентилятора.
- 2. Ослабить крепление натяжных устройств ремня пневмокомпрессора и ремня генератора, снять ремни со шкива привода вентилятора.
- 3. Отсоединить провода подачи напряжения к электромагнитному клапану, демонтировать трубку подвода масла, вывернув болт ее крепления из штуцера клапана, и, отвернув болты крепления, снять клапан вместе с прокладкой с привода вентилятора.
- 4. Отвернуть болты и гайки крепления, аккуратно, не повредив прокладку, снять с двигателя привод вентилятора.
- 5. Отвернуть болты крепления и снять с привода крышку 2 (см. рис. 40 стр. 86) в сборе со ступицей и ведомым валом 25, извлечь из ведущего вала 18 пакет ведущих и ведомых дисков 4 и 5, а также поршень 30 в сборе с упором 31 и нажимной обоймой 27.
- 6. Зафиксировать шестерню привода 17 от проворота, отвернуть гайку ее крепления. Используя любой подходящий съемник, спрессовать шестерню с ведущего вала.
- 7. Выпрессовать ведущий вал. При этом шкив 24 должен быть зафиксирован в осевом направлении во избежании поломки черпательной трубки 9. После этого извлечь из корпуса привода 14 внутреннюю обойму заднего подшипника 15 и внутреннюю распорную втулку 11 вместе с уплотнительными кольцами 12.
- 8. Вывернуть винты крепления 10, снять черпательную трубку и шкив привода компрессора и генератора.
- 9. Отвернуть болты крепления 19 упорного фланца 16, выпрессовать наружную распорную втулку 21 и наружную обойму заднего подшипника. Во избежании передачи осевого усилия через сепаратор переднего подшипника, выпрессовку необходимо проводить с помощью специального приспособления, как показано на рис. 12 и 13. После этого извлечь из корпуса передний подшипник.

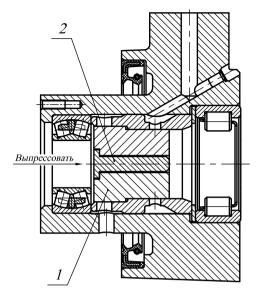


Рис. 12. Выпрессовка распорной втулки 1- сухарь (2 шт.); 2- вставка

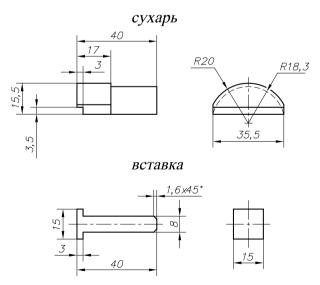


Рис. 13. Приспособление (материал – сталь)

ПОРЯДОК СБОРКИ ПРИВОДА ВЕНТИЛЯТОРА

Сборку привода вентилятора необходимо осуществлять в обратной последовательности. При этом должны соблюдаться следующие требования:

- 1. Перед сборкой все манжеты, резиновые и металлические уплотнительные кольца, а также подшипники должны быть смазаны дизельным маслом.
- 2. Запрессовку переднего сферического подшипника в корпус необходимо производить с помощью оправки, недопускающей перекоса внутренней обоймы относительно наружной, а также передачи осевого усилия через сепаратор.
- 3. Установку распорных втулок в корпус привода необходимо проводить, как показано на рис. 14, чтобы обеспечить совпадение маслоподводящих отверстий.

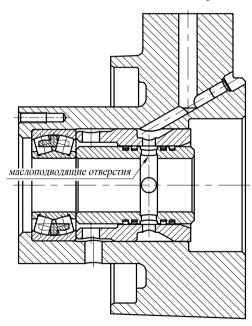
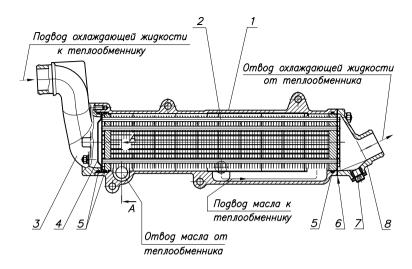


Рис. 14. Установка распорных втулок в корпус привода вентилятора

- 4. При сборке пакета фрикционных дисков чередование ведущих и ведомых дисков должно быть таким, как показано на рис. 40 (стр. 86). При этом ведущие диски необходимо устанавливать так, чтобы направление отжимных усов было против часовой стрелки, если смотреть на привод со стороны ступицы вентилятора.
- 5. При сборке привода вентилятора необходимо обеспечить затяжку контролируемым моментом следующих резьбовых соединений:
 - болтов упорного фланца 1,8...2,0 Н⋅м (18...20 кгс⋅м);
 - винтов черпательной трубки 0,5...0,8 Н⋅м (4,9...7,8 кгс⋅м);
 - болтов крышки привода 2,0...2,5 Н⋅м (19,61...24,51кгс·м);
 - гаек шестерни и ступицы 16...20 H⋅м (156,9...196,1кгс⋅м).

Во время сборки привода вентилятора на заходную часть резьбы гайки шестерни необходимо нанести герметик УГ-9 ТУ 2257-407-00208947-2004 или УГ-10 ТУ 2257-408-00208947-2004. Ржавчина, масляные и другие загрязнения в резьбовом соединении не допускаются.


У собранного привода вентилятора вращение шкива относительно корпуса должно быть свободным, без заеданий. Вращение ступицы вентилятора относительно неподвижных корпуса и шкива также должно быть свободным, без заеданий.

ЖИДКОСТНО-МАСЛЯНЫЙ ТЕПЛООБМЕННИК ТРУБЧАТОГО ТИПА

С мая 2006 года двигатели ЯМЗ могут комплектоваться жидкостно-масляным теплообменником (ЖМТ) трубчатого или пластинчатого типов.

ЖМТ предназначен для поддержания оптимального уровня температуры масла системы смазки двигателя и крепится к блоку цилиндров с левой стороны двигателя.

Конструкция ЖМТ трубчатого типа показана на рис. 15. Теплообменник состоит из корпуса 1, теплопередающего элемента 2, передней 3 и задней 8 крышек. На входе в трубки теплопередающего элемента установлена защитная сетка 4.

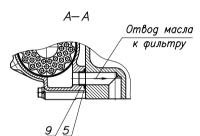
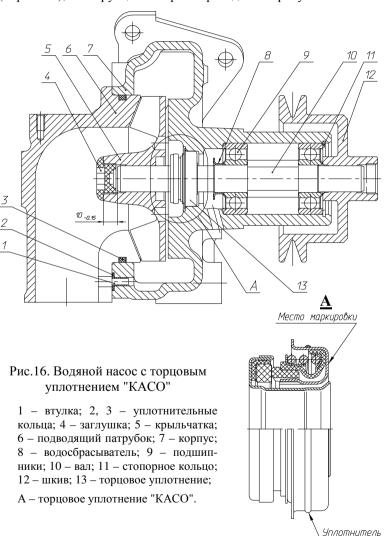


Рис. 15. Жидкостно-масляный теплообменник:

1 — корпус; 2 — теплопередающий элемент; 3 — крышка передняя; 4 — сетка защитная; 5 — уплотнительные кольца; 6 — прокладка; 7 — пробка сливная; 8 — крышка задняя; 9 — втулка


Теплопередающий элемент 2 и передняя крышка 3 уплотняются резиновыми кольцами 5. Задняя крышка 8 уплотняется прокладкой 6. В задней крышке 8 устанавливается пробка 7 для слива охлаждающей жидкости из двигателя.

Теплообменник устанавливается на левой стороне блока цилиндров с обеспечением подвода и отвода масла через специальные каналы. При этом уплотнение стыка между ЖМТ и блоком цилиндров осуществляется резиновыми кольцами 5, установленными на втулках 9 (см. разрез A-A).

Подвод и отвод охлаждающей жидкости осуществляется через патрубки крышек 3 и 8 теплообменника.

ВОДЯНОЙ НАСОС С ТОРЦОВЫМ УПЛОТНЕНИЕМ ФИРМЫ «КАСО»

С августа 2006 года двигатели ЯМЗ комплектуются водяными насосами с торцовым уплотнением фирмы «КАСО» (Германия), конструкция которого приведена на рисунке 16.

Взаимозаменяемость нового водяного насоса с насосами, на которых устанавливалось торцовое уплотнение прежней конструкции, сохранена.

Водяной насос с торцовым уплотнением фирмы «КАСО» имеет маркировку на корпусе 236-1307010-Б2.

РАЗБОРКА И СБОРКА ВОДЯНОГО НАСОСА С УПЛОТНЕНИЕМ «КАСО»

ПОРЯДОК СНЯТИЯ И РАЗБОРКИ ВОДЯНОГО НАСОСА

Порядок снятия и разборки водяного насоса с уплотнением «КАСО» в основном такой же, как для водяного насоса прежней конструкции. Основное отличие заключается в том, что уплотнение «КАСО» запрессовано одновременно и в корпус и на вал. Поэтому выпрессовка вала с подшипниками производится до тех пор, пока вал не вышел из соединения с уплотнением.

В случае износа торцовое уплотнение «КАСО» восстановлению не подлежит и требует замены.

ПОРЯДОК СБОРКИ ВОДЯНОГО НАСОСА

Сборку водяного насоса с уплотнением «КАСО» производить в той же последовательности, что и насос прежней конструкции. Основное отличие заключается в том, что уплотнение «КАСО» устанавливается до установки шкива. При этом необходимо выполнить следующие операции:

- 1. Установить корпус насоса в сборе с валом и подшипниками через специальную проставку 5 вертикально на жесткую опору 7, которая имеет внутреннее отверстие для размещения установочного винта 6 (см. рисунок 17).
- 2. Установить свободно (без усилий) на верхний конец вала торцовое уплотнение «КАСО» 1.
- 3. Установить в расточку корпуса насоса специальный кондуктор 2 и оправку 3, обеспечив соприкосновение внутренней расточки оправки 3 с уплотнением 1.
- 4. Для исключения передачи усилия напрессовки на тела качения подшипников 4 необходимо выбрать «люфт» в подшипниках, для чего вворачивать установочный винт 6 в

резьбовое отверстие проставки 5 до тех пор, пока корпус насоса «от руки» не начнет поворачиваться на подшипниках вокруг вертикальной оси. После чего винт 6 необходимо вывернуть примерно на 0,25...0,3 оборота. При этом корпус насоса не должен «от руки» поворачиваться.

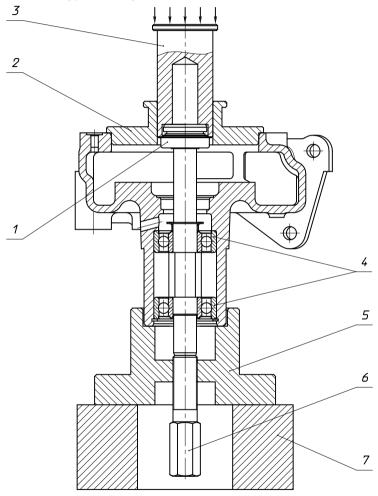


Рис.17. Установка торцового уплотнения "КАСО"

1 – торцовое уплотнение; 2 – кондуктор; 3 – оправка; 4 – подшипники; 5 – проставка; 6 – установочный винт; 7 – опора.

5. Запрессовать уплотнение 1 в корпус насоса и одновременно на вал, прилагая усилие к торцу оправки 3.

Далее сборку водяного насоса производить в той же последовательности, что и насос прежней конструкции, начиная с напрессовки шкива на вал. При этом подсборку крыльчатки насоса с деталями прежнего уплотнения исключить из-за отсутствия необходимости.

ВНИМАНИЕ: ТОРЦОВОЕ УПЛОТНЕНИЕ «КАСО» НЕ ДОПУС-КАЕТСЯ УСТАНАВЛИВАТЬ В КОРПУС ВОДЯНОГО НАСОСА, ИЗГОТОВЛЕННЫЙ ДО АВГУСТА 2006 ГОДА, ТАК КАК ПРИ ЭТОМ НЕ ОБЕСПЕЧИВАЕТСЯ НАТЯГ И ГЕРМЕТИЧНОСТЬ В СОЕДИНЕНИИ УПЛОТНЕНИЯ С КОРПУСОМ. ТОРЦОВОЕ УПЛОТНЕНИЕ ПРЕЖНЕЙ КОНСТРУКЦИИ МОЖЕТ БЫТЬ ПРИМЕНЕНО В ВОДЯНОМ НАСОСЕ С КОРПУСОМ, ИЗМЕНЕННЫМ ПОД УПЛОТНЕНИЕ «КАСО».

На рисунках 18 - 21 приводятся эскизы для изготовления деталей приспособления по сборке водяного насоса при установке уплотнения «КАСО» (см. рисунок 17). Материал деталей – сталь.

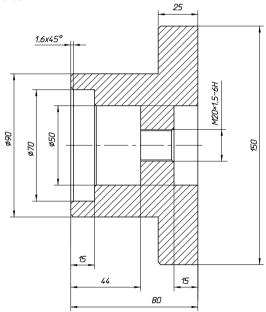


Рис. 18. Проставка

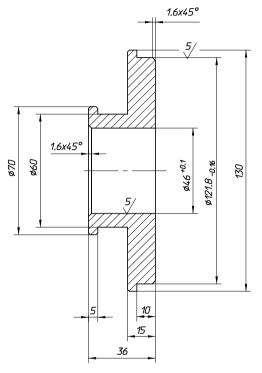


Рис. 19. Кондуктор

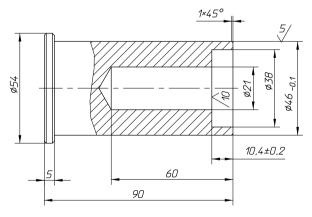


Рис. 20. Оправка

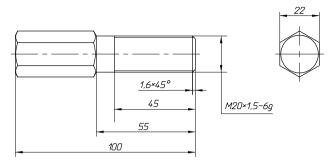


Рис. 21. Установочный винт

ТЕРМОСТАТ С ДРЕНАЖНЫМ КЛАПАНОМ

Для обеспечения более быстрого прогрева двигатели ЯМЗ с марта 2007 года комплектуются термостатами с дренажным клапаном (рис. 22). Указанные термостаты имеют обозначение Т117-06 или ТС107-06М и выполнены из нержавеющей стали (вместо латуни на ранее применявшихся термостатах).

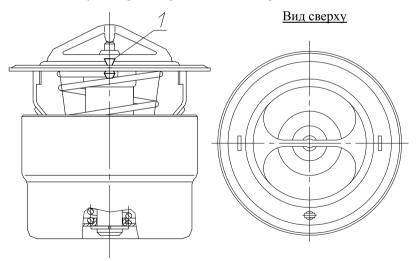


Рис. 22. Термостат с дренажным клапаном 1 – дренажный клапан

ВНИМАНИЕ! ДЛЯ ИСКЛЮЧЕНИЯ РАЗМОРАЖИВАНИЯ РАДИАТОРА ПРИ ЭКСПЛУАТАЦИИ В ЗИМНИХ УСЛОВИЯХ СИСТЕМА ОХЛАЖДЕНИЯ ДВИГАТЕЛЯ С ТЕРМОСТАТАМИ С ДРЕНАЖНЫМ КЛАПАНОМ ДОЛЖНА БЫТЬ ЗАПРАВЛЕНА ТОЛЬКО НИЗКОЗАМЕРЗАЮЩЕЙ ЖИДКОСТЬЮ (СМ. РАЗДЕЛ «ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ»).

ПРИ НЕВОЗМОЖНОСТИ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЯ С НИЗКОЗАМЕРЗАЮЩЕЙ ЖИДКОСТЬЮ ПРИ МИНУСОВЫХ ТЕМ-ПЕРАТУРАХ РЕКОМЕНДУЕТСЯ ДЕМОНТИРОВАТЬ ДРЕНАЖНЫЙ КЛАПАН ПУТЕМ ПЕРЕКУСЫВАНИЯ ШЕЙКИ КЛАПАНА.

КОРОБКИ ПЕРЕДАЧ ТИПА ЯМЗ-2381

Коробки передач типа ЯМЗ-2381 производства ОАО «ТМЗ» являются модернизированной модификацией коробок передач типа ЯМЗ-238ВМ.

На коробках передач типа ЯМЗ-2381 внедрен усиленный первичный вал за счет увеличения диаметра вала, изменено уплотнение первичного вала и система подачи смазки от масляного насоса в крышку первичного вала. Подвод смазки осуществляется по масляному трубопроводу от масляного насоса в крышку первичного вала.

ОСНОВНЫЕ МОДЕЛИ КОРОБОК ПЕРЕДАЧ

Модель кор	обки передач	Працириятиа	Предприятие- потребитель
До изменения	После изменения	Предприятие- изготовитель	
ЯМЗ-238ВМ	ЯМЗ-2381-02*		РУП «МАЗ»
ЯМЗ-238ВК	ЯМЗ-2381-31*	OAO «TM3»	ХК «АвтоКрАЗ»
ЯМЗ-238ВУ	ЯМЗ-2381-50*		ОАО «АЗ«Урал»

Примечание:

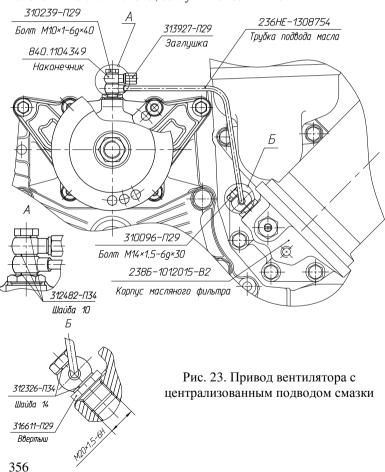
* - Коробка передач в сборе в комплектности со сцеплением диафрагменного типа взаимозаменяема при замене ведомого диска сцепления 182.1601130 на 182.1601130-10 с увеличенным внутренним диаметром ступицы и муфты выключения сцепления 183.1601180-01 на 184.1601180-31.

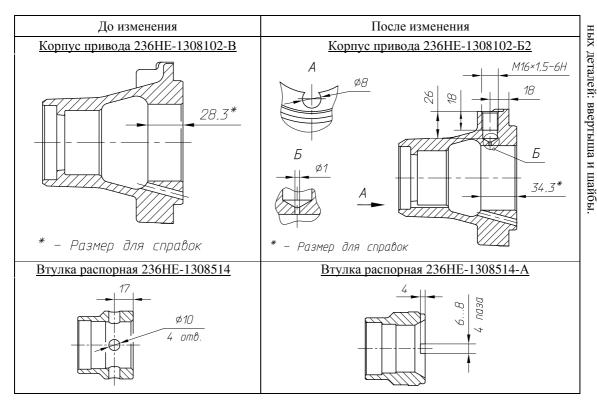
КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ

Наименование и обозначение деталей коробок передач в комплектности со сцеплением диафрагменного типа до и после изменения КП приводятся в таблице.

Haynsayanayya	До изменения		После изменения	
Наименование детали, узла КП	Обозначение детали	Кол.	Обозначение детали	Кол.
Вал первичный с трубкой в сборе	236Н-1701027-Б	1	2381.1701025*	1
Крышка первичного вала	236-1701040-A	1	2381.1701040	1
Насос масляный	236-1704010-A	1	336.1704010-10	1
Прокладка	236-1704017-A2	1	_	_
Кольцо уплотнительное	-	_	336.1704019	1
Трубопровод	-	_	336.1704300	1
Манжета	236-1701230	_	201.1701230	1
Болт М16х1,5-6qх37	-	_	310264-П29	2
Прокладка	<u> </u>	_	201.1015624	4
Кольцо упорное	-	_	201.1721413	3

Примечание:


Для переоборудования коробки передач типа ЯМЗ-238ВМ в коробку передач типа ЯМЗ-2381 создан комплект запасных частей 2361.1700200, включающий детали и узлы, необходимые для замены и установки на коробку передач типа ЯМЗ-238ВМ.


Комплект запасных частей 2361.1700200 входит в состав номенклатуры запасных частей OAO «Автодизель».

^{* -} Вал первичный с задним подшипником и трубкой в сборе.

ПРИВОД ВЕНТИЛЯТОРА С ЦЕНТРАЛИЗОВАННОЙ СМАЗКОЙ

С целью повышения работоспособности приводов вентилятора без муфты включения вентилятора двигатели ЯМЗ с апреля 2008 года комплектуются приводами вентилятора с централизованным подводом смазки (рис. 23). Комплектация двигателей приводами производится с установкой дополнительных деталей: трубки подвода масла, болтов крепления трубки 310096-П29 и 310239-П29, медных шайб 312326-П34 312482-П34, наконечника 840.1104349, заглушки 313927-П29.

привода, распорной втулкой (см. рис. 24), наличием дополнитель-

Новая

конструкция

приводов

отличается

корпусом

Рисунок 24. Корпус привода, втулка распорная до и после изменения

Для обеспечения взаимозаменяемости старого и нового привода предусмотрена поставка в запасные части комплекта, состоящего из привода и дополнительных деталей:

_	корпус фильтра с клапаном в сборе 238Б-1012015-В2	1 шт.
_	кольцо уплотнительное 840.1012083-20	1 шт.
_	прокладка корпуса масляного фильтра 236-1012100	2 шт.
_	прокладка привода вентилятора 236-1308108-Б	1 шт.
_	трубка подвода масла 236НЕ-1308754	1 шт.
_	наконечник 840.1104349	1 шт.
_	заглушка 313927-П29	1 шт.
_	болт М14х1,5-6gх30	1 шт.
_	болт М10х1-6gх40	1 шт.
_	шайба 14	2 шт.
_	เมลหัดิล 10	3 IIIT.

Ниже приводятся обозначения комплекта запасных частей (привод с дополнительными деталями), привода до и после изменения, применяемость на двигателях ЯМЗ.

Обозначение	Обозначение	Обозначение	Применяемость
комплекта	привода до	привода после	приводов на
запасных частей	изменения	изменения	двигателях ЯМЗ
236HE-1308004	236HE- 1308011-E3	236HE- 1308011-И	ЯМЗ-238Б-1, -2, -5, -14,-19, -22, -23, -25, -28, -31 ЯМЗ-238Д, -1, -2, -8, -30, -33 ЯМЗ-238ДЕ-10, -12 ЯМЗ-238ДИ
238B-1308004	238В- 1308100-Б2	238B- 1308011-B	ЯМЗ-238БВ, ЯМЗ-238БЛ-1
238K-1308004	238K- 1308011-B2	238K- 1308011-Γ	ЯМЗ-238БК-3
238НБ-1308004	238НБ- 1308011-Г2	238НБ- 1308011-Д	ЯМЗ-238НДЗ
238НП-1308004	238НП- 1308011-Б2	238НП- 1308011-В	ЯМ3-238НД3-1, ЯМ3-238НД4

Комплекты запасных частей приводов входят в состав номенклатуры запасных частей ОАО «Автодизель» на соответствующие модели двигателей ЯМЗ.

С целью снижения нагруженности манжеты в приводе вентилятора с мая 2011 года устанавливается дроссель 1 в корпус приводов вентилятора с централизованной смазкой (рис. 39а).

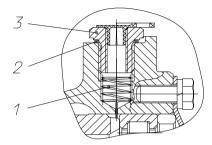


Рис. 39а. Дроссель в корпусе привода вентилятора:

- 1 дроссель 236НЕ-1308780;
- 2 шайба 312367-П:
- 3 ввертыш 316603-П29

ВНИМАНИЕ! ПЕРЕД РАЗБОРКОЙ ПРИВОДА ВЕНТИЛЯТОРА С ЦЕЛЬЮ ЗАМЕНЫ ПОДШИПНИКОВ ИЛИ МАНЖЕТЫ, НЕОБХОДИМО ДЕМОНТИРОВАТЬ ДРОССЕЛЬ ИЗ КОРПУСА ПРИВОДА.

СЦЕПЛЕНИЕ ЯМЗ-183-15

ВВЕДЕНИЕ

На Вашем транспортном средстве установлено современное диафрагменное сцепление вытягиваемого типа.

Руководство содержит сведения, необходимые для эксплуатации сцепления. Сведения по эксплуатации привода выключения сцепления приводятся в руководстве по эксплуатации транспортного средства.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ И ПРЕДУПРЕЖДЕНИЯ

- 1. **Внимание!** Для исключения возможности получения травмы при установке коробки передач запрещается работа руками в зоне между привалочными поверхностями картера маховика и картера сцепления.
- 2. При установке сцепления на маховик двигателя обеспечить затяжку болтов требуемым моментом. Затяжку болтов необходимо производить в несколько приёмов, при этом не допускать больших перекосов диафрагменной пружины.
- 3. При установке ведомого диска обратить внимание на положение пружинных пластин фрикционной накладки, они должны быть расположены со стороны длинной части ступицы.
- 4. Периодически контролировать величину хода муфты выключения сцепления. При нажатой до упора педали сцепления ход муфты не должен превышать 13 мм, а отход нажимного диска при этом должен быть не менее 2 мм.

Контроль величины хода муфты выполнять через открытые люки картера сцепления на неработающем двигателе. Регулировку осуществлять изменением хода педали сцепления, который рекомендуется устанавливать минимальным, но достаточным для полного выключения сцепления (без ведения).

Контроль величины отхода нажимного диска выполнять через нижний люк картера сцепления по перемещению четырех болтов с внутренним шестигранником.

5. Не допускать провисания коробки передач на ведомом диске сцепления при её установке на двигатель во избежание деформации ведомого диска.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА

	Модель сцепления
Основные параметры и характеристики	ЯМЗ-183-15
Тип сцепления	Сухое, фрикционное, одно- дисковое, с диафрагменной вытяжной пружиной, фрик- ционными накладками на безасбестовой основе
Установка сцепления	По стандартам ISO (SAE 1)
Крутящий момент двигателя, $H \cdot M$ (кгс·м)	
- минимальный	1100 (110)
- максимальный	1400 (140)
Диск ведомый сцепления	С демпфером пружинно- фрикционного типа, с упругим креплением одной из фрикционных накладок
Размеры фрикционных накладок, мм	
- наружный диаметр	430
- внутренний диаметр	240
- толщина	4,3
Диаметр пояса нажимного диска Dн, мм	327
Толщина нажимной пружины Т, мм	5
Шлицы ступицы ведомого диска:	SAE-2"-10C
- число шлиц	10
- наружный диаметр, мм	50,95
- внутренний диаметр, мм	41,1
- ширина впадины, мм	7,9
Ход муфты, необходимый для выключения сцепления не более, мм	13
Отход нажимного диска при ходе муфты 13 мм, не менее, мм	2
Подшипник муфты выключения сцепления	Специальный, интегрального типа, шариковый радиальный, с постоянной смазкой производства ОАО «ВПЗ» г. Вологда

2	Модель сцепления
Основные параметры и характеристики	ЯМЗ-183-15
Смазка опор вала вилки выключения сцепления	ШРУС-4М или ШРУС-4
Маркировка:	
- нажимного диска с кожухом в сборе	183-05
- ведомого диска	182-10
- диафрагменной пружины	182

УСТРОЙСТВО И РАБОТА СЦЕПЛЕНИЯ

Диафрагменное сцепление (рис. 25) состоит из ведущих и ведомых частей, а также механизма выключения.

Ведущая часть сцепления – нажимной диск с кожухом 2 устанавливается на маховик двигателя и крепится болтами М10х70 (12 шт.) на диаметре 450 MM. Центрирование осуществляется по цилиндрической проточке диаметром 475 мм на маховике и кожухе сцепления. Нажимной диск соединён с кожухом при помощи четырёх пакетов пластин, обеспечивающих центрирование, осевое перемещение и передачу крутящего момента от кожуха к нажимному диску. Нажимное усилие создаётся диафрагменной пружиной специальной конструкции, которая, будучи связанной с муфтой, осуществляет также выключение сцепления. Для центрирования диафрагменной пружины и исключения её проворачивания относительно кожуха и нажимного диска, на нажимном диске установлено шесть пар втулок со специальными оттяжными скобами. Применение этих скоб позволяет сохранять постоянный контакт нажимного диска с пружиной и обеспечивать отход нажимного диска при выключении сцепления.

Ведомая часть – ведомый диск 1 с демпфером пружиннофрикционного типа, снижающим динамические нагрузки на трансмиссию. Крепление накладок осуществляется двумя типами латунных заклёпок (рис. 26).

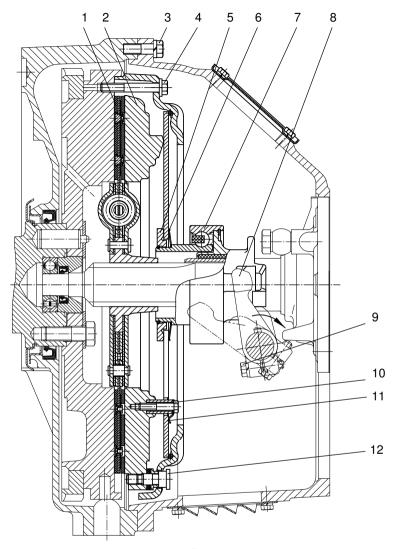


Рис. 25. Сцепление:

1 - диск ведомый; 2 - диск нажимной; 3 - болт M12х38; 4 - болт M10х70; 5 - кольцо упорное; 6 - пружинная шайба; 7 - муфта выключения сцепления; 8 - вилка выключения сцепления; 9 - болт M10х40; 10 - болт M8х40; 11 - скоба оттяжная; 12 - болт нажимного диска с внутренним шестигранником

Крепление фрикционной накладки, расположенной со стороны маховика, осуществляется 24 простыми заклепками 4 одновременно с креплением двенадцати пружинных пластин. Крепление другой накладки производится к пружинным пластинам 12 простыми и 12 ступенчатыми заклепками 2.

Подпружинивание одной из накладок позволяет снизить их износ в 2...3 раза.

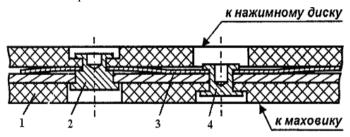


Рис. 26. Крепление накладок:

- 1 фрикционная накладка; 2 ступенчатая заклёпка;
- 3 пружинная пластина; 4 простая заклёпка

Механизм выключения сцепления состоит из муфты с подшипником 7 (см. рис. 25) и вилки 8 с валом, на шлицевой конец которого устанавливается рычаг. Муфта выключения сцепления соединяется с диафрагменной пружиной с помощью запорного устройства (рис. 27). При работе муфта центрируется по направляющей крышки заднего подшипника первичного вала коробки передач и удерживается от поворота боковыми поверхностями вилки.

Выключение сцепления осуществляется поворотом вала по часовой стрелке (см. рис. 25).

ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ

Для увеличения долговечности и надёжности сцепления в период эксплуатации транспортного средства выполняйте следующие требования:

- 1. Не допускать эксплуатацию с неисправным приводом управления сцеплением.
- 2. При трогании с места гружёного автомобиля, а также на плохой дороге или подъёме использовать только первую передачу.

- 3. Производить трогание при минимально возможной частоте вращения коленчатого вала двигателя, таким образом, чтобы темп включения сцепления позволял транспортному средству двигаться без «рывков» и «дёрганий».
- 4. При маневрировании старайтесь не допускать регулирования скорости пробуксовкой сцепления (педаль сцепления частично нажата).
- 5. Не допускать многократных включений сцеплений («раскачивание» автомобиля при застревании) без интервалов, необходимых для его остывания.
- 6. Не допускать эксплуатацию сцепления, имеющего «ведение» (неполное выключение), которое характеризуется затруднённым включением синхронизированных передач, включением несинхронизированных передач со скрежетом, движением транспортного средства с выключенным сцеплением на низших передачах.
- 7. Не допускать эксплуатацию сцепления с «пробуксовкой» (неполное включение), приводящей к перегреву деталей сцепления, повышенному износу фрикционных накладок, появлению трещин на нажимном диске и маховике.
- 8. При установке сцепления применять специальные центрирующие оправки ведомого диска и муфты, позволяющие более качественно эксплуатировать сцепление.
- 9. Применять для смазки опор вала вилки ШРУС-4М или ШРУС-4.
- 10. Производить затяжку болтов только требуемым моментом (см. таблицу "Моменты затяжки болтов сцепления").

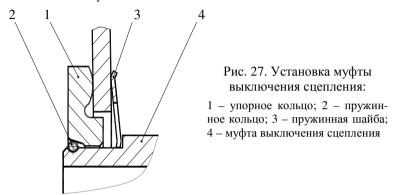
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

Техническое обслуживание сцепления включает ежедневную проверку работы сцепления и привода сцепления на транспортном средстве, а также техническое обслуживание и проверку состояния деталей и сборочных единиц после демонтажа коробки передач и снятия сцепления с маховика двигателя.

При ежедневной проверке на транспортном средстве убедитесь в отсутствии «ведения», «пробуксовки», посторонних шумов и стуков.

Периодически должен производиться контроль величины хода муфты выключения сцепления (см. п. 4 «Требования безопасности и предупреждения»).

После снятия коробки передач (без снятия сцепления с маховика):


- 1. Визуально проконтролировать зону в районе двадцати четырёх овальных отверстий диафрагменной пружины на отсутствие трещин. Треснувшая пружина подлежит замене. При установке новой пружины болты М8х40 и болты нажимного диска должны быть установлены на герметик УГ-6 ТУ6-01-1285-84, который наносится на 2...3 витка сухих и чистых болтов.
- 2. Обратить внимание на положение диафрагменной пружины. Если внутреннее отверстие пружины смещено в сторону маховика на 10...12мм от плоского состояния (конус в сторону двигателя), фрикционные накладки ведомого диска полностью изношены и поллежат замене.
- 3. Проверить лёгкость вращения подшипника муфты выключения сцепления.
- 4. Проконтролировать момент затяжки болтов крепления сцепления к маховику и при необходимости подтянуть.
- 5. Проверить шлицы первичного вала коробки передач в зоне контакта со ступицей ведомого диска и направляющую крышки подшипника первичного вала. При наличии забоин удалите их мелкой наждачной бумагой. Смажьте шлицы тонким слоем смазки ШРУС-4М или ШРУС-4.
- 6. Проконтролировать момент затяжки болтов M10x40 вилки выключения спепления.

После снятия сцепления с маховика:

- 1. Проверить состояние фрикционных накладок ведомого диска. При замене фрикционных накладок следует обратить внимание на состояние пружинных пластин ведомого диска. Если высота волнистых поверхностей пластин менее 0,5 мм, пластины должны быть заменены. Установка фрикционных накладок без пружинных пластин не допускается.
- 2. Проверить состояние поверхностей трения нажимного диска и маховика. При необходимости допускается проточка всей плоскости маховика (до центровочного бурта) на глубину не более 1,5 мм и поверхности трения нажимного диска не более 0,5 мм. Выпуклость поверхностей трения не допускается.

УСТАНОВКА СЦЕПЛЕНИЯ И КОРОБКИ ПЕРЕДАЧ НА ДВИГАТЕЛЬ

1. Установить муфту на нажимной комплект (корзину) в соответствии с рис. 27.

- 2. Вставить в передний подшипник первичного вала специальную оправку и установите на неё ведомый диск.
- 3. Установить нажимной комплект с муфтой в сборе на маховик, обеспечив совпадение крепёжных отверстий.
- 4. Завернуть болты крепления сцепления М10х70 вручную на 3...4 оборота, а затем затянуть их в несколько приёмов, равномерно подтягивая нажимной комплект к маховику, не допуская значительных перекосов диафрагменной пружины.
- 5. С помощью специальной оправки, установленной на центрирующую оправку ведомого диска, сцентрировать муфту выключения сцепления 1 и развернуть её, как показано на рис. 28 (положение выступа А). Допускается угловое отклонение установки выступа А не более 10°.
 - 6. Удалить центрирующие оправки.
- 7. Установить вилку выключения сцепления в положение, соответствующее приблизительно ее рабочему положению, и повернуть ее против часовой стрелки до упора с помощью рычага, надетого на шлицевой конец вала вилки. Зафиксировать рычаг в этом положении.
- 8. Включить передачу в коробке передач, снять крышку верхнего люка.

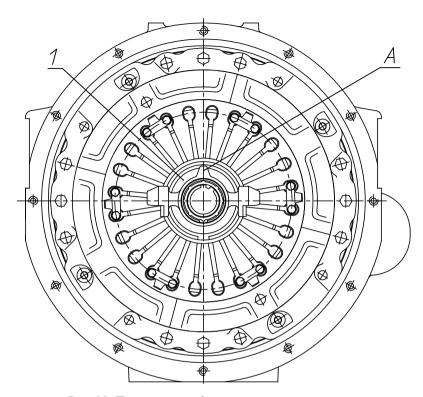


Рис. 28. Положение муфты выключения сцепления на нажимном комплекте

1 – муфта выключения сцепления;

А – положение выступа муфты выключения сцепления

- 9. Вывесить коробку передач в горизонтальное положение и соблюдая соосность первичного вала коробки передач и коленчатого вала двигателя, аккуратно завести первичный вал в шлицы ведомого диска, направляющую крышки заднего подшипника первичного вала в отверстие муфты выключения сцепления.
- 10. При затруднении заведения в шлицы ступицы ведомого диска вращать первичный вал за выходной фланец коробки передач.
- 11. Закрепить коробку передач, выключить передачу. Освободить рычаг и повернуть его по часовой стрелке, установить вилку выключения сцепления в рабочее положение.

- 12. Соединить рычаг с приводом выключения сцепления. При применении пневмомеханического или пневмогидравлического привода, не имеющего компенсации износа фрикционных накладок, обеспечить зазор между вилкой и упорными поверхностями муфты 3,6±04 мм (обеспечивается регулировкой привода).
- 13. Отрегулировать ход муфты выключения сцепления регулировкой хода педали и, вращая вручную коленчатый вал двигателя и выключая сцепление, убедиться по перемещению всех четырёх болтов нажимного диска, что нажимной диск отходит равномерно и на необходимую величину.
- 14. Включить прямую передачу в коробке передач, выключить сцепление и, вращая выходной фланец, убедиться, что сцепление выключается чисто (без «ведения»).
- 15. Окончательную проверку работы сцепления проводить на работающем двигателе. При выключении сцепления выходной фланец коробки передач не должен вращаться на любой передаче при любом числе оборотов двигателя.

МОМЕНТЫ ЗАТЯЖКИ БОЛТОВ СПЕПЛЕНИЯ

Болт	Момент затяжки, Н·м (кгс·м)
M8x40	10,78 (1,1)15,69 (1,6)
M10x70	39,22 (4,0)49,03 (5,0)
M10x40	27,45 (2,8)35,3 (3,6)
M12x38	98,6 (10)107,87 (11)
Болт нажимного диска	68,64 (7)98,06 (10)

ОСОБЕННОСТИ УСТАНОВКИ МУФТЫ ВЫКЛЮЧЕНИЯ СЦЕПЛЕНИЯ

Установка муфты выключения сцепления со специальным шариковым радиальным подшипником с постоянной смазкой и пластмассовым сепаратором (далее по тексту – интегральная муфта) на диафрагменную пружину нажимного комплекта («корзины») производится в соответствии с рисунком 29.

Для установки кольца 1 нажимной комплект 3 переместить в сторону зафиксированной интегральной муфты 5 или, наоборот, интегральную муфту в сторону зафиксированного нажимного комплекта усилием 500...800 Н (50...80 кгс), сжимая пружинную шайбу 4, затем установить кольцо 1 в канавку внутреннего кольца подшипника интегральной муфты и снять усилие.

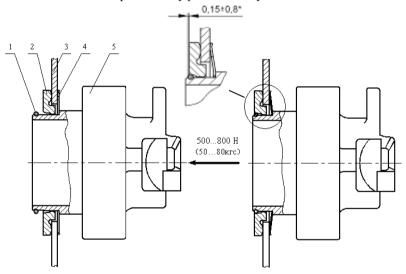


Рис. 29. Установка интегральной муфты на диафрагменную пружину на нажимной комплект:

После установки сцепления на двигатель обеспечить соосность центрального отверстия интегральной муфты $(\emptyset60,55\pm0,15)$ и шлицевого отверстия ступицы ведомого диска.

^{1 —} пружинное кольцо; 2 — упорное кольцо; 3 — диафрагменная пружина; 4 — пружинная шайба; 5 — муфта.

^{* –} размер, обеспечивающий работоспособность соединения.

Перед установкой коробки передач на двигатель интегральную муфту развернуть как показано на рисунке 28, обращая особое внимание на положение выступа А. Допускается угловая погрешность установки выступа $A \pm 10^{\circ}$.

На направляющую поверхность крышки первичного вала нанести тонкий слой смазки ШРУС-4 или ШРУС-4М.

Вилку выключения сцепления повернуть против часовой стрелки (от коробки передач) до упора ее в два выступа крышки первичного вала.

Коробку передач устанавливать, вывесив её в горизонтальное положение и предварительно включив прямую передачу. При стыковке совпадение шлиц первичного вала коробки передач и ведомого диска сцепления обеспечить поворотом выходного вала коробки передач.

После установки коробки передач поворотом вала вилки по часовой стрелке установить вилку выключения и интегральную муфту в рабочее положение.

Разборка производится в обратной последовательности.

ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

Причина неисправности	Способ устранения	
ПРОБУКСОВКА		
Износ фрикционных накладок ведомого диска	Заменить накладки или ведомый диск в сборе	
Попадание масла на поверхности трения сцепления через уплотнения двигателя или коробки передач	Удалить масло с поверхностей трения, устранить течь масла	
Поломка нажимной пружины	Заменить нажимную пружину или нажимной диск с кожухом и пружиной в сборе	

Причина неисправности	Способ устранения		
Сцепление частично выключено из - за неисправности привода выключения	Устранить неисправность привода выключения сцепления в соответствии с руководством по эксплуатации транспортного средства		
«ВЕДЕНИЕ»			
Привод выключения сцепления не обеспечивает необходимого хода муфты выключения	Проверить работу привода выключения сцепления и устранить неисправности		
Недостаточный отход нажимного диска	Обеспечить контакт оттяжных скоб с диафрагменной пружиной, устранить налет грязи между нажимным диском и кожухом, разобрать сцепление		
Коробление нажимного диска	Заменить нажимной диск с кожухом в сборе		
Использование ведомого дис- ка после ремонта с недопусти- мым биением и кривизной	Заменить ведомый диск или исправить методом безударной рихтовки		
Разрушение накладки ведомо- го диска	Заменить накладки или ведомый диск		
Заедание ведомого диска на шлицах первичного вала	Зачистить шлицы первичного вала или заменить первичный вал		
ВЫДЕЛЯЮЩИЙСЯ ШУМ В МЕСТЕ РАСПОЛОЖЕНИЯ СЦЕПЛЕНИЯ			
Отсутствие смазки в подшип-	Заменить муфту выключения		

сцепления с подшипником

372

его износ

нике муфты выключения или

ВОДЯНОЙ НАСОС ПРОИЗВОДСТВА ОАО «ТМЗ» С ТОРЦОВЫМ УПЛОТНЕНИЕМ ФИРМЫ «КАСО»

С июня 2008 года двигатели ЯМЗ всех модификаций, комплектаций и исполнений, на которые устанавливался водяной насос 236-1307010-АЗ производства ОАО «Тутаевский моторный завод» (ТМЗ) комплектуются водяными насосами с торцовым уплотнением фирмы «КАСО», конструкция которого приведена на рисунке 30.

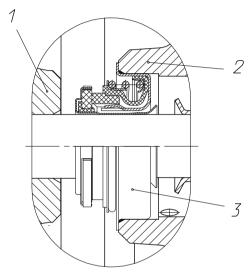


Рис. 30. Торцовое уплотнение фирмы «КАСО»

1 – крыльчатка водяного насоса 236-1307032-Г, 2 – корпус водяного насоса 236-1307015-Ж; 3 – уплотнение торцовое «КАСО» ААНИ 15.9x36.45/ 42x10.8 SIC-SIC

Водяной насос производства ОАО «ТМЗ» с торцовым уплотнением фирмы «КАСО» имеет маркировку на корпусе 236-1307010-А5.

Все комбайновые двигатели ЯМЗ, на которые устанавливался водяной насос 238АК-1307010 комплектуются новыми водяными насосами 238АК-1307010-А1 производства ОАО «ТМЗ» с торцовым уплотнением фирмы «КАСО».

Взаимозаменяемость новых водяных насосов с насосами, на которых устанавливалось торцовое уплотнение прежней конструкции, сохранена.

Торцовое уплотнение «КАСО» выполнено в виде неразборного узла, устанавливаемого путем одновременной запрессовки на вал и в корпус насоса. Детали пары трения выполнены из материала на основе карбида кремния, обладающего высокой износостойкостью.

Торцовое уплотнение «КАСО» имеет обозначение ААНU 15,9x36,45/ 42x10,8 SIC-SIC – код 8.9014.

Порядок снятия и разборки водяных насосов производства ОАО «ТМЗ» с торцовым уплотнением «КАСО» аналогичен приведенному в разделе «Водяной насос с торцовым уплотнением фирмы «КАСО».

В запасные части для водяных насосов 236-1307010-А3 и 238АК-1307010 вместо комплекта деталей торцового уплотнения 236-1307029-А поставляется комплект 236-1307029-А1.

ПРИВОД ВЕНТИЛЯТОРА С ВЯЗКОСТНОЙ МУФТОЙ

Двигатели ЯМЗ могут комплектоваться вентилятором с вязкостной муфтой фирмы «Borg Warner» диаметром 660 мм (см. раздел «Назначение и особенности комплектации»), работающей в автоматическом режиме в зависимости от температуры набегающего потока воздуха после радиатора.

Конструкция привода с вязкостной муфтой приведена на рис. 31.

Муфта включается с помощью биметалического термоэлемента при температуре воздуха 62...68°C, что соответствует температуре охлаждающей жидкости 85...93°C.

ВНИМАНИЕ! ПРИ ДЕМОНТАЖЕ И ХРАНЕНИИ ВЯЗКОСТНОЙ МУФТЫ ВЕНТИЛЯТОР ДОЛЖЕН УСТАНАВЛИВАТЬСЯ ВЕРТИ-КАЛЬНО ИЛИ ГОРИЗОНТАЛЬНО ТЕРМОЭЛЕМЕНТОМ ВНИЗ.

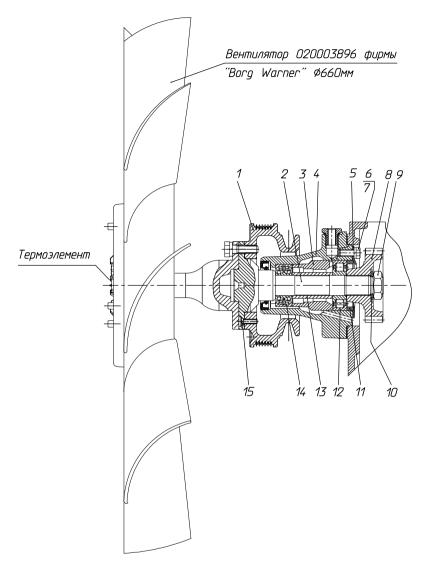


Рис. 31. Привод вентилятора:

1-шкив; 2-вал; 3-втулка; 4-корпус; 5-фланец упорный; 6-болт; 7-шайба; 8-шестерня; 9-гайка; 10-шайба; 11-кольцо упорное; 12-подшипник; 13-втулка; 14-подшипник; 15-винт

СОДЕРЖАНИЕ

	Стр
ВНИМАНИЕ!	4
НАЗНАЧЕНИЕ И ОСОБЕННОСТИ КОМПЛЕКТАЦИИ	
СИЛОВЫХ АГРЕГАТОВ	5
ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА	7
УСТРОЙСТВО И РАБОТА ДВИГАТЕЛЯ	20
МАРКИРОВАНИЕ И ПЛОМБИРОВАНИЕ	97
ЭКСПЛУАТАЦИОННЫЕ МАТЕРИАЛЫ	99
ТРЕБОВАНИЯ БЕЗОПАСНОСТИ	111
ПУСК, РАБОТА И ОСТАНОВКА СИЛОВОГО АГРЕГАТА	112
ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ	120
РЕГУЛИРОВКА ДВИГАТЕЛЯ	126
ТЕКУЩИЙ РЕМОНТ ДВИГАТЕЛЕЙ	197
ОСОБЕННОСТИ РАЗБОРКИ И СБОРКИ ДВИГАТЕЛЯ	208
ГЕРМЕТИЗИРУЮЩИЕ СОСТАВЫ	227
СЦЕПЛЕНИЕ	228
КОРОБКА ПЕРЕДАЧ	241
ГАРАНТИИ ЗАВОДА И ПОРЯДОК ПРЕДЪЯВЛЕНИЯ	
РЕКЛАМАЦИЙ	276
УТИЛИЗАЦИЯ	282
ПРИЛОЖЕНИЯ	284
Приложение А. Комплект поставки	284
Приложение Б. Консервация и расконсервация	285
Приложение В. Моменты затяжки основных резьбовых	200
соединений	299 301
Приложение Г. Предпродажная подготовка Приложение Д. Сведения о содержании драгоценных	301
материалов, цветных металлов и сплавов	304
ДОПОЛНЕНИЕ К РУКОВОДСТВУ	307
Двигатели ЯМЗ-238Б, ЯМЗ-238Д, ЯМЗ-238БВ, ЯМЗ-238БЛ-1,	20,
ЯМЗ-238БК, ЯМЗ-238ДК, ЯМЗ-238ДИ, ЯМЗ-238НДЗ, ЯМЗ-	
238НД4, ЯМ3-238НД5, ЯМ3-238НД6, ЯМ3-238НД7, ЯМ3-	
238НД8 и их комплектации	307
Привод вентилятора с КЭМ 32-23М1	339
Разборка и сборка привода вентилятора	343
ЖМТ трубчатого типа	346
Водяной насос с торцовым уплотнением фирмы «КАСО»	348
Термостат с дренажным клапаном	353
Коробки передач типа ЯМЗ-2381	354
Привод вентилятора с централизованной смазкой	356
Сцепление ЯМЗ-183-15	360
Водяной насос производства ОАО «ТМЗ» с торцовым уплотнением фирмы «КАСО»	373
уплотнением фирмы «КАСО» Привод вентилятора с вязкостной муфтой	374
привод вентилитора с визкостной муфтой	314